首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Stable nitrogen and carbon isotopic ratios of hair strands of six patients suffering from anorexia nervosa were measured to monitor a dietary change from near starvation to recovery. This paper presents the results of a first-time study of nitrogen and carbon balance of the patients prior to and after admittance to a hospital and therapy. Sequential analysis of the isotopic ratios of hair strands of all patients could be related to the respective body mass index (BMI) of each patient. Our hypothesis concerning the diachronic change in delta15N and delta13C during therapy was met: The delta15N values were inversely related to the BMI, indicating a slow-down in catabolism of bodily protein due to the process of gluconeogenesis during the starvation phase. In contrast, the delta13C values and BMI were in phase: an increase in BMI resulted in an increase in the delta13C values. This rise in delta13C ratios is best interpreted by an increased supply of protein in the diet. Furthermore, delta15N and delta13C were inversely related. We conclude that hair, which is easily and non-traumatically sampled, is an adequate monitor that reflects dietary change and nitrogen balance within days. This isotopic method may also be applied in forensic studies with regard to cases of deprivation, and starvation, and may be a method for investigating starvation in historic populations.  相似文献   

2.
Recent insights into fractionation during dark respiration and rapid dynamics in isotope signatures of leaf- and ecosystem-respired CO(2) indicate the need for new methods for high time-resolved measurements of the isotopic signature of respired CO(2) (delta(13)C(res)). We present a rapid and simple method to analyse delta(13)C(res) using an in-tube incubation technique and an autosampler for small septum-capped vials. The effect of storage on the delta(18)O and delta(13)C ratios of ambient CO(2) concentrations was tested with different humidity and temperatures. delta(13)C ratios remained stable over 72 h, whereas delta(18)O ratios decreased after 24 h. Storage at 4 degrees C improved the storage time for delta(18)O. Leaves or leaf discs were incubated in the vials, flushed with CO(2)-free air and respired CO(2) was automatically sampled within 5 min on a microGas autosampler interfaced to a GV-Isoprime isotope ratio mass spectrometer. Results were validated by simultaneous on-line gas-exchange measurements of delta(13)C(res) of attached leaves. This method was used to evaluate the short-term (5-60 min) and diurnal dynamics of delta(13)C(res) in an evergreen oak (Quercus ilex) and a herb (Tolpis barbata). An immediate depletion of 2-4 per thousand from the initial delta(13)C(res) value occurred during the first 30 min of darkening. Q. ilex exhibited further a substantial diurnal enrichment in delta(13)C(res) of 8 per thousand, followed by a progressive depletion during the night. In contrast, T. barbata did not exhibit a distinct diurnal pattern. This is in accordance with recent theory on fractionation in metabolic pathways and may be related to the different utilisation of the respiratory substrate in the fast-growing herb and the evergreen oak. These data indicate substantial and rapid dynamics (within minutes to hours) in delta(13)C(res), which differed between species and probably the growth status of the plant. The in-tube incubation method enables both high time-resolved analysis and extensive sampling across different organs, species and functional types.  相似文献   

3.
A mounting body of evidence suggests that changes in energetic conditions like prolonged starvation can be monitored using stable isotope ratios of tissues such as bone, muscle, hair, and blood. However, it is unclear if urinary stable isotope ratios reflect a variation in energetic condition, especially if these changes in energetic condition are accompanied by shifts in dietary composition. In a feeding experiment conducted on captive bonobos (Pan paniscus), we monitored urinary δ(13)C, δ(15)N, total C (carbon), total N (nitrogen), and C/N ratios and compared these results with glucocorticoid levels under gradually changing energy availability and dietary composition. Measurements of daily collected urine samples over a period of 31 days showed that while shifts in urinary isotope signatures of δ(13)C and δ(15)N as well as total C were best explained by changes in energy consumption, urinary total N excretion as well as the C/N ratios matched the variation in dietary composition. Furthermore, when correcting for fluctuations in dietary composition, the isotope signatures of δ(13)C and δ(15)N as well as total C correlated with urinary glucocorticoid levels; however, the urinary total N and the C/N ratio did not. These results indicate for the first time that it is possible to non-invasively explore specific longitudinal records on animal energetic conditions and dietary compositions with urinary stable isotope ratios and elemental compositions, and this research provides a strong foundation for investigating how ecological factors and social dynamics affect feeding habits in wild animal populations such as primates.  相似文献   

4.
While past experiments on animals, birds, fish, and insects have shown changes in stable isotope ratios due to nutritional stress, there has been little research on this topic in humans. To address this issue, a small pilot study was conducted. Hair samples from eight pregnant women who experienced nutritional stress associated with the nausea and vomiting of morning sickness (hyperemesis gravidarum) were measured for carbon (delta13C) and nitrogen (delta15N) stable isotope ratios. The delta13C results showed no change during morning sickness or pregnancy when compared with pre-pregnancy values. In contrast, the delta15N values generally increased during periods of weight loss and/or restricted weight gain associated with morning sickness. With weight gain and recovery from nutritional stress, the hair delta15N values displayed a decreasing trend over the course of gestation towards birth. This study illustrates how delta15N values are not only affected by diet, but also by the nitrogen balance of an individual. Potential applications of this research include the development of diagnostic techniques for tracking eating disorders, disease states, and nitrogen balance in archaeological, medical, and forensic cases.  相似文献   

5.
Previous studies have attempted to correlate stable isotope signatures of tissues with the nutritional condition of birds, mammals, fishes, and invertebrates. Unfortunately, very little is known about the relationship between food limitation and the isotopic composition of reptiles. We examined the effects that starvation has on delta13C and delta15N signatures in the tissues (excreta, carcass, scales, and claws) of six, distantly related squamate reptiles (gaboon vipers, Bitis gabonica; ball pythons, Python regius; ratsnakes, Elaphe obsoleta; boa constrictors, Boa constrictor; western diamondback rattlesnakes, Crotalus atrox, and savannah monitor lizards, Varanus exanthematicus). Analyses revealed that the isotopic composition of reptile carcasses did not change significantly in response to bouts of starvation lasting up to 168 days. In contrast, the isotopic signatures of reptile excreta became significantly enriched in 15N and depleted in 13C during starvation. The isotopic signatures of reptile scales and lizard claws were less indicative of starvation time than those of excreta. We discuss the physiological mechanisms that might be responsible for the starvation-induced changes in 13C and 15N signatures in the excreta, and present a mixing model to describe the shift in excreted nitrogen source pools (i.e. from a labile source pool to a nonlabile source pool) that apparently occurs during starvation in these animals. The results of this study suggest that naturally occurring stable isotopes might ultimately have some utility for characterizing nitrogen and carbon stress among free-living reptiles.  相似文献   

6.
Three stable isotope ratios, D/H, (13)C/(12)C and (18)O/(16)O, are measurable in ethanol, an important organic compound that is used as a material for food and beverages, fuel and chemical feedstock, and as a substance related to metabolism. We developed a simple and rapid method of measurement of three isotope ratios of ethanol in aqueous solution at millimole levels using gas chromatography-high-temperature conversion or combustion-isotope ratio mass spectrometry (GC-TC/C-IRMS) combined with solid-phase microextraction (SPME). Using this method, the delta value for ethanol was determined in 30 min for deltaD and delta(13)C, and in 75 min for delta(18)O with precisions of +/-9 per thousand, +/-0.3 per thousand and +/-0.7 per thousand, respectively, for deltaD, delta(13)C, and delta(18)O. An advantage of this process is that it requires no distillation for ethanol purification. The method is useful for small quantities of analyte with low ethanol concentrations, which is expected for environmental and metabolic studies.  相似文献   

7.
The application of (13)C/(12)C in ecosystem-scale tracer models for CO(2) in air requires accurate measurements of the mixing ratios and stable isotope ratios of CO(2). To increase measurement reliability and data intercomparability, as well as to shorten analysis times, we have improved an existing field sampling setup with portable air sampling units and developed a laboratory setup for the analysis of the delta(13)C of CO(2) in air by isotope ratio mass spectrometry (IRMS). The changes consist of (a) optimization of sample and standard gas flow paths, (b) additional software configuration, and (c) automation of liquid nitrogen refilling for the cryogenic trap. We achieved a precision better than 0.1 per thousand and an accuracy of 0.11 +/- 0.04 per thousand for the measurement of delta(13)C of CO(2) in air and unattended operation of measurement sequences up to 12 h.  相似文献   

8.
The numerous stable isotope studies of scleractinian photosynthetic reef-building corals in tropical seas have demonstrated the complexity of the biological and environmental factors that give rise to their isotopic composition. Scleractinian non-photosynthetic corals of the deep cold water environment might be expected to reflect the more stable physical environment in the deep sea. However, in comparison, little is known about their isotope systematics. The present study concentrates on specimens of Lophelia pertusa from the north-eastern Atlantic, the Norwegian Shelf and Fjord. Aliquots taken from the theca represent time series and show variations in delta(13)C and delta(18)O of up to 4.7 and 2.4 per thousand, respectively. The variations seem to be related to morphological features of branching. The tendency of higher values near the tip of the polyps reported previously was detected only in some samples. The delta(18)O of the corals are in all cases more negative than the equilibrium values. There is a strong correlation between delta(13)C and delta(18)O forming linear arrays. The difference between these arrays is more pronounced in delta(13)C. The covariation of delta(13)C and delta(18)O indicates an overruling 'kinetic isotope effect'. This is in line with the behaviour of some trace elements. This isotope effect should be regarded as one manifestation of variations in partition coefficients dictated by a biological control on mineralisation (such as food or reproduction) rather than changes in the relative contribution of metabolic carbon affecting delta(13)C, and changes in temperature affecting delta(18)O.  相似文献   

9.
We present an optimized method for compound-specific stable carbon isotope (delta(13)C) analysis of n-alkanes. For sample preparation, the traditionally used Soxhlet extraction was replaced by accelerated solvent extraction (ASE). delta(13)C values of individual n-alkanes--measured using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS)--were first drift-corrected with regularly discharged pure CO(2) pulses as reference gas and, secondly, corrected for the amount dependence of the delta(13)C values by co-analyzing standards with varying analyte concentrations. Finally, the delta(13)C values were calibrated against two internal standards. The improved method was applied to selected sediment samples from a palaeoenvironmental study in subtropical NE Argentina. The measured delta(13)C values of all long-chain n-alkanes (nC(27), nC(29), nC(31) and nC(33)), representing biomarkers for terrestrial plants, correlate significantly with the delta(13)C of bulk organic matter (delta(13)C(TOC)). The latter is hence corroborated as a proxy for C3-C4 vegetation changes. Furthermore, the delta(13)C variations reveal higher amplitudes for nC(31) and nC(33) than for nC(27) and nC(29), indicating that the former n-alkanes mainly derive from C3 and/or C4 grasses, whereas the latter homologues mainly derive from C3 plants (trees and shrubs). Except for the lowermost part of the sediment core, the delta(13)C values of the mid-chain alkanes nC(23) and nC(25) do not reflect the terrestrial delta(13)C pattern, thus indicating that they are probably mainly of lacustrine origin.  相似文献   

10.
Carbohydrates and proteins are among the most abundant naturally occurring biomolecules and so suitable methods for their reliable stable isotope analysis by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) are required. Due to the non-volatile nature of these compounds they require hydrolytic cleavage to their lower molecular weight subunits and derivatisation prior to GC/C/IRMS analysis. The addition of carbon to the molecules and any kinetic isotopic fractionation associated with derivatisation must be accounted for in order to provide meaningful stable isotope values and estimates of propagated errors. To illustrate these points amino acid trifluoroacetate/isopropyl esters and alditol acetates were prepared from authentic amino acids and monosaccharides, respectively. As predicted from the derivatisation reaction mechanisms, a kinetic isotope effect was observed which precludes direct calculation of delta(13)C values of the amino acids and monosaccharides by simple mass balance equations. This study shows that the kinetic isotope effect associated with derivatisation is both reproducible and robust, thereby allowing the use of correction factors. We show how correction factors can be determined and accurately account for the addition of derivative carbon. As a consequence of the addition of a molar excess of carbon and the existence of a kinetic isotope effect during derivatisation, errors associated with determined delta(13)C values must be assessed. We illustrate how such errors can be quantified (for monosaccharides +/-1.3 per thousand and for amino acids between +/-0.8 per thousand and +/-1.4 per thousand). With the magnitude of the errors for a given delta(13)C value of a monosaccharide or amino acid quantified, it is possible to make reliable interpretations of delta(13)C values, thereby validating the determination of delta(13)C values of amino acids as TFA/IP esters and monosaccharides as alditol acetates.  相似文献   

11.
Stable isotope ratios act as chemical tracers of animal diet, and are used to study food web dynamics. Because carbon stable isotope values are influenced by tissue lipid content, a number of extraction methods have been used to remove lipid bias, but, in some species and tissues, extractions also alter nitrogen isotope values. We have analyzed delta(13)C and delta(15)N in Atlantic bluefin tuna liver and white muscle, and whole Atlantic herring, fish tissues covering a wide range of lipid content (bulk C:N 3.1-12.5). In order to compare delta(13)C and delta(15)N values from traditional chloroform/methanol extractions with non-polar solvent alternatives, we analyzed samples following (1) no treatment, (2) lipid removal using chloroform/methanol (2:1), and (3) Soxhlet extractions using chloroform, diethyl ether or hexane. Chloroform/methanol and chloroform extractions produced the lowest C:N values and highest delta(13)C values. In bluefin tuna, chloroform and hexane extractions significantly altered liver delta(15)N, and all methods significantly altered delta(15)N values in white muscle. Whole Atlantic herring delta(15)N was not altered by any extraction method, while the 2:1 chloroform/methanol extraction most completely removed fish tissue lipid components. Our results indicate that delta(15)N effects are not limited to common chloroform/methanol extractions and suggest that chloroform/methanol is the most effective extraction for delta(13)C correction. Given evidence for delta(15)N alteration among all tested methods, mathematical correction approaches should be further explored as an alternative to lipid correction.  相似文献   

12.
Increasing use is being made of stable isotopes as indicators of habitat use and trophic ecology of animals. Preservation of tissues can alter stable isotope signatures. We investigated the effects of addition of ethanol and NaCl solution (hereafter 'salt'), and of freezing and drying, on carbon and nitrogen isotopic values in blood of the spectacled petrel Procellaria conspicillata, and compared these with those from simultaneously growing feathers. The mean delta(13)C values of blood preserved in ethanol was significantly higher, and of blood preserved in salt was significantly lower than that of dried or frozen samples. delta(13)C values in ethanol showed high variation according to brand and batch and could account for the differences found in delta(13)C ratios in ethanol-preserved blood samples. Mean delta(13)C and delta(15)N values in growing feathers were higher than in blood, suggesting tissue-specific fractionation. We conclude that different methods of preserving tissues such as blood may bias stable isotope values, and urge researchers to consider this issue. Air drying is proposed as a practical and unbiased method for blood preservation in field situations where freezing is not a practical option, and a mathematical approach is suggested to permit comparison between studies using different preservation methods or tissues.  相似文献   

13.
Carbon (13C/12C) and nitrogen (15N/14N) stable isotope ratios were longitudinally measured in human hair that reflected the period from pre-conception to delivery in 10 pregnant women. There was no significant change in the delta13C results, but all subjects showed a decrease in delta15N values (-0.3 to -1.1 per thousand) during gestation. The mechanisms causing this decrease in hair delta15N have not been fully elucidated. However, since the delta15N values of dietary nitrogen and urea nitrogen are significantly lower compared to maternal tissues, it is hypothesized that the increased utilization of dietary and urea nitrogen for tissue synthesis during pregnancy resulted in a reduction of the steady state diet to a body trophic level effect by approximately 0.5-1 per thousand. An inverse correlation (R2 = 0.67) between hair delta15N and weight gain was also found, suggesting that positive nitrogen balance results in a reduction of delta15N values independent of diet. These results indicate that delta15N measurements have the ability to monitor not only dietary inputs, but also the nitrogen balance of an organism. A potential application of this technique is the detection of fertility patterns in modern and ancient species that have tissues that linearly record stable isotope ratios through time.  相似文献   

14.
Stable isotope ratios ((13)C/(12)C and (15)N/(14)N) were measured in royal jelly (RJ) samples by isotope ratio mass spectrometry (IRMS) to evaluate authenticity and adulteration. Carbon and nitrogen isotope contents (given as delta values relative to a standard, delta(13)C, delta(15)N) of RJ samples from various European origins and samples from commercial sources were analyzed. Uniform delta(13)C values from -26.7 to -24.9 per thousand were observed for authentic RJ from European origins. Values of delta(15)N ranged from -1.1 to 5.8 per thousand depending on the plant sources of nectars and pollen. High delta(13)C values of several commercial RJ samples from -20.8 to -13.3 per thousand indicated adulteration with high fructose corn syrup (HFCS) as a sugar source. Use of biotechnologically produced yeast powder as protein source for the adulterated samples was assumed as delta(15)N values were lower, as described for C(4) or CAM plant sources. RJ samples from authentic and from adulterated production were distinguished. The rapid and reliable method is suitable for urgent actual requirements in food monitoring.  相似文献   

15.
Many Salmo trutta populations consist of non-anadromous (freshwater-resident) brown trout and anadromous (sea-run migratory) sea trout. Although adult brown trout and sea trout can usually be identified using differences in size and body colouration, it is not possible to easily identify eggs/alevins as the progeny of brown trout or sea trout. In this study we show that delta(13)C and delta(15)N, measured using a continuous flow isotope ratio mass spectrometer (CF-IRMS), can accurately identify fish eggs as the progeny of freshwater-resident (delta(13)C(egg) = -25.7 +/- 1.9 per thousand,delta(15)N(egg) = 9.2 +/- 1.8 per thousand) or migratory (delta(13)C(egg) = -19.9 +/- 1.1 per thousand, delta(15)N(egg) = 14. 3 +/- 1.5 per thousand) adult female Salmo trutta. Case studies show that stable isotope analysis is a more reliable technique for distinguishing anadromous adult fish than differentiation using morphological characteristics. For example, stable isotope analysis of brown trout from Loch Eck, Scotland, revealed that some individuals possessed delta(13)C and delta(15)N signatures indicative of marine feeding despite visual identification as freshwater-resident fish. It is most likely that these fish are misidentified sea trout although it possible that these fish may be brown trout that have adopted an estuarine feeding strategy to avoid interspecific competition for food within Loch Eck with salmon, powan and Arctic charr. Most stable isotope studies of fish ecology use terminal tissue sampling to provide sufficient biological material for isotopic analysis; however, our study suggests that adipose fin tissue could provide a comparable measure of delta(13)C and delta(15)N. Such a strategy would be invaluable when studying the trophic ecology or migration patterns of fish of high conservation value.  相似文献   

16.
Stable isotope ratios of carbon (delta(13)C) and oxygen (delta(18)O) are increasingly used to investigate environmental influences on plant physiology. Cellulose is often isolated for isotopic studies, but some authors have questioned the value of this process. We studied trends in delta(13)C and delta(18)O of whole foliage and holocellulose from seedlings of three Pinus species across three overstory environments to evaluate the benefits of holocellulose extraction in the context of a traditional ecological experiment. Both tissue types showed increasing delta(13)C from closed-canopy controls to thinned plots to 0.3 ha canopy gaps, and no change in delta(18)O between overstory environments. delta(13)C of P. resinosa and P. strobus was greater than delta(13)C of P. banksiana in whole foliage and holocellulose samples, and there were no differences in delta(18)O associated with species in either tissue type. Our results suggest whole foliage and holocellulose provide similar information about isotopic trends across broad environmental gradients and between species, but holocellulose may be better suited for studying differences in stable isotope composition between multiple species across several treatments.  相似文献   

17.
Changes in the 13C discrimination of current leaf photosynthesis might have profound impacts on root respiratory substrates. Therefore, the aim of this study was (1) to refine a method for the isolation of root and leaf starch and soluble sugars (neutral fraction) for stable carbon isotope analysis and (2) to assess the short-term temporal variability of the C isotope composition (delta13C) of starch and of the neutral fraction of beech roots and leaves at different canopy heights. An existing method for isolating starch for stable C isotope analysis based on enzymatic hydrolysis was modified to account for the low starch content of the samples. This was achieved by removing the enzyme (alpha-amylase) by ultrafiltration after the hydrolysis, resulting in very low carbon blanks. The neutral fraction was separated from organic acids and cations by ion-exchange chromatography. An anion-exchange resin in the [HCO3]--form was chosen that ensured high precision of C blanks. Beech leaves at 5, 10 and 20 m above the forest floor as well as roots were sampled six times during a day/night cycle in July 2003. Delta13C values of bulk material, starch and the neutral fraction increased from the lower to the higher canopy with mean differences between 5 and 20 m of 3.8, 3.4 and 2.7 per thousand for the delta13C values of starch, neutral fraction and bulk foliage, respectively. The delta13C value of foliar starch increased from the morning to the afternoon and decreased during the night, but diurnal differences (up to 3.1 per thousand) were only statistically significant for leaves sampled at 5 and 10 m height. In roots, no diurnal variation in the delta13C of starch was observed during the short time frame of one day and the delta13C of the neutral fraction did not differ between samples taken at 16:30 and 22:00. Calculated delta13C values of starch, which was mobilised during the night, were more positive than the total starch (all sampling times pooled) in leaves. Furthermore, the delta13C values of mobilised starch were approximately 5 per thousand more positive than that of the mobilised neutral fraction. Hence, the delta13C of potential sources for export from canopy leaves to roots varied considerably in their C isotope composition.  相似文献   

18.
A computer-controllable mobile system is presented which enables the automatic collection of 33 air samples in the field and the subsequent analysis for delta13C and delta18O stable isotope ratios of a carbon-containing trace gas in the laboratory, e.g. CO2, CO or CH4. The system includes a manifold gas source input for profile sampling and an infrared gas analyzer for in situ CO2 concentration measurements. Measurements of delta13C and delta18O of all 33 samples can run unattended and take less than six hours for CO2. Laboratory tests with three gases (compressed air with different pCO2 and stable isotope compositions) showed a measurement precision of 0.03 per thousand for delta13C and 0.02 per thousand for delta18O of CO2 (standard error (SE), n = 11). A field test of our system, in which 66 air samples were collected within a 24-hour period above grassland, showed a correlation of 0.99 (r2) between the inverse of pCO2 and delta13C of CO2. Storage of samples until analysis is possible for about 1 week; this can be an important factor for sampling in remote areas. A wider range of applications in the field is open with our system, since sampling and analysis of CO and CH4 for stable isotope composition is also possible. Samples of compressed air had a measurement precision (SE, n = 33) of 0.03 per thousand for delta13C and of 0.04 per thousand for delta18O on CO and of 0.07 per thousand for delta13C on CH4. Our system should therefore further facilitate research of trace gases in the context of the carbon cycle in the field, and opens many other possible applications with carbon- and possibly non-carbon-containing trace gases.  相似文献   

19.
The commonly used technique for determination of plant stable carbon isotope composition is analysis of CO(2) liberated during combustion of chemically extracted nitrocellulose or alpha-cellulose. The delta(13)C of cellulose is usually accepted as a more reliable record of growth environment conditions compared with bulk plant material analysis. Unfortunately, cellulose extraction techniques are time-consuming, and usually require toxic chemicals such as toluene, chloroform, benzene, methanol, concentrated acids, etc. We tested the possibility of replacing nitrocellulose analysis with bulk organic analysis. Sphagnum and Polytrichum mosses collected along a vertical transect (altitudes 500 to 1400 m), provided material for analysis in the wide range of delta(13)C: -32.66 per thousand and -26.20 per thousand for bulk organic matter and -24.11 per thousand and -31.86 per thousand for nitrocellulose. The correlation for delta(13)C value of extracted cellulose and delta(13)C values of bulk organic matter were very good (>0.95). Our results suggested that delta(13)C analyses can be performed on bulk plant material instead of cellulose, without significant loss of information, at least for Polytrichum and Sphagnum mosses. Moreover, we confirmed that the extraction process of nitrocellulose did not cause any significant isotopic fractionation.  相似文献   

20.
Even though the recent development in on-line methods for the stable isotope determination in cellulose has led to a significant increase in sample throughput and decrease in sample preparation expenditure, there still is a large potential for optimizing the analytical procedures by simultaneously measuring the isotope ratios of two or even more elements. Therefore, the main objective of this study was to answer the question whether high-temperature pyrolysis (HTP) is a suitable and reliable technique for the determination of the carbon isotopic composition of cellulose simultaneously during the well-known conventional oxygen isotope analysis. This study shows that HTP of cellulose is a technique that can produce reasonable delta(13)C values, matching the requirements of most research problems related to paleoclimatology. The reproducibility of the delta values for (13)C/(12)C is better than 0.2 per thousand. Some deficiencies of the method are related to the incomplete conversion of the organic carbon in the sample to carbon monoxide. A clear isotope effect seems to be related to the non-statistical conversion of the carbon in the cellulose to CO. The extent of this effect appears to be controlled by the relative proportion of crystallized and amorphous matter in the cellulose structure. Those deficiencies can be eliminated by using an appropriate normalization and by applying the principles of identical treatment for reference materials and samples. In general, a very good agreement is achieved for carbon isotope values determined by HTP and elemental analysis (EA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号