首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oriented powder samples of NaxCoO2 are studied by 23Na NMR and SQUID magnetometry. In nominal 0.50相似文献   

2.
In-plane ferromagnetism in charge-ordering Na0.55CoO2   总被引:1,自引:0,他引:1  
The magnetic and transport properties are systematically studied on the single crystal Na(0.55)CoO2 with the resistivity divergence below 50 K. A weak ferromagnetic ordering is observed in susceptibility below 20 K with the magnetic field parallel to the Co-O plane, while no such ferromagnetic ordering is observed with the field perpendicular to the Co-O plane. It gives evidence for the existence of in-plane ferromagnetism below 20 K. The observed magnetoresistance of 30% at the field of 6 T at low temperatures indicates an unexpectedly strong spin-charge coupling in the triangle lattice NaxCoO2 system.  相似文献   

3.
We have studied the superconducting phase diagram of NaxCoO2.yH(2)O as a function of electronic doping, characterizing our samples both in terms of Na content x and the Co valence state. Our findings are consistent with a recent report that intercalation of H3O+ ions into NaxCoO2, together with water, acts as an additional dopant, indicating that Na substoichiometry alone does not control the electronic doping of these materials. We find a superconducting phase diagram where optimal T(C) is achieved through a Co valence range of 3.24-3.35, while T(C) decreases for materials with a higher Co valence. The critical role of dimensionality in achieving superconductivity is highlighted by similarly doped nonsuperconducting anhydrous samples, differing from the superconducting hydrate only in interlayer spacing.  相似文献   

4.
NaxCoO2, the parent compound of the recently synthesized superconductor Na(x)CoO(2):yH(2)O, exhibits bulk antiferromagnetic order below approximately 20 K for 0.75相似文献   

5.
Using muon spin rotation, well-defined bulk approximately 100% magnetic phases in NaxCoO2 are revealed. A novel magnetic phase is detected for x=0.85 with the highest transition temperature ever observed for x>or=0.75. This stresses the diversity of x>or=0.75 magnetic phases and the link between magnetic and structural degrees of freedom. For the charge-ordered x=0.50 compound, a cascade of transitions is observed below 85 K. From a detailed analysis of our data, we conclude that the ordered moment varies continuously with temperature and suggest that the two secondary transitions at 48 and 29 K correspond to a moderate reorientation of antiferromagnetically coupled moments.  相似文献   

6.
Poly- and single-crystalline NaxCoO2 has been successfully intercalated with H2O and D2O as confirmed by x-ray diffraction and thermogravimetric analysis. Resistivity, magnetic susceptibility, and specific heat measurements show bulk superconductivity with T(c) close to 5 K in both cases. The substitution of deuterium for hydrogen has an effect on T(c) of less than 0.2 K. Investigation of the resistivity anisotropy of NaxCoO2.yH(2)O single crystals shows (a). almost zero resistivity below T(c), and (b). an abrupt upturn at T(*) approximately 52 K in both the ab plane and the c direction. The implications of our results on the possible superconducting mechanism will be discussed.  相似文献   

7.
We present the first angle-resolved photoemission study of Na0.7CoO2, the host material of the superconducting NaxCoO2.nH(2)O series. Our results show a hole-type Fermi surface, a strongly renormalized quasiparticle band, a small Fermi velocity, and a large Hubbard U. The quasiparticle band crosses the Fermi level from M toward Gamma suggesting a negative sign of effective single-particle hopping t(eff) (about 10 meV) which is on the order of magnetic exchange coupling J in this system. Quasiparticles are well defined only in the T-linear resistivity (non-Fermi-liquid) regime. Unusually small single-particle hopping and unconventional quasiparticle dynamics may have implications for understanding the phase of matter realized in this new class of a strongly interacting quantum system.  相似文献   

8.
The CoO2 layers in NaxCoO2 may be viewed as a spin S=1/2 triangular-lattice doped with charge carriers. The underlying physics of the cobaltates is very similar to that of the high T_(c) cuprates. We will present unequivocal 59Co NMR evidence that below T_(CO) approximately 51 K, the insulating ground state of the itinerant antiferromagnet Na0.5CoO2 (T_(N) approximately 86 K) is induced by charge ordering.  相似文献   

9.
Within the t-J model we study several experimentally accessible properties of the 2D-triangular lattice system NaxCoO2, using a numerically exact canonical ensemble study of 12 to 18 site triangular toroidal clusters as well as the icosahedron. Focusing on the doping regime of x approximately 0.7, we study the temperature dependent specific heat, magnetic susceptibility, and the dynamic Hall coefficient R_{H}(T,omega) as well as the magnetic field dependent thermopower. We find a crossover between two phases near x approximately 0.75 in susceptibility and field suppression of the thermopower arising from strong correlations. An interesting connection is found between the temperature dependence of the diamagnetic susceptibility and the Hall coefficient. We predict a large thermopower enhancement, arising from transport corrections to the Heikes-Mott formula, in a model situation where the sign of hopping is reversed from that applicable to NaxCoO2.  相似文献   

10.
The phase diagram of nonhydrated NaxCoO2 has been determined by changing the Na content x using a series of chemical reactions. As x increases from 0.3, the ground state goes from a paramagnetic metal to a charge-ordered insulator (at x=1/2), then to a "Curie-Weiss metal" (around 0.70), and finally to a weak-moment magnetically ordered state (x>0.75). The unusual properties of the state at 1/2 (including particle-hole symmetry at low T and enhanced thermal conductivity) are described. The strong coupling between the Na ions and the holes is emphasized.  相似文献   

11.
We report the magnetization, specific heat, and transport measurements of a high quality Na(0.85)CoO2 single crystal in applied magnetic fields up to 14 T. At high temperatures, the system is in a paramagnetic phase. It undergoes a magnetic phase transition below approximately 20 K. For the field H||c, the measurement data of magnetization, specific heat, and magnetoresistance reveal a metamagnetic transition from an antiferromagnetic state to a quasiferromagnetic state at about 8 T at low temperatures. However, no transition is observed in the magnetization measurements up to 14 T for H perpendicular c. The low temperature magnetic phase diagram of Na(0.85)CoO2 is determined.  相似文献   

12.
In the rich phase diagram of NaxCoO2, x=0.71 enjoys special stability and is called the Curie-Weiss metal due to its anomalous properties. Similarly, x=0.84 prepared from high temperature melt is a special end point beyond which the system phase separates. Using synchrotron x-ray diffraction on single crystals, we discovered sqrt[12]a and sqrt[13]a superlattice structures which we interpret as the ordering of Na (vacancy) clusters. These results lead to a picture of coexisting local moments and itinerant carriers and form the first step towards understanding the many anomalous properties of cobaltates.  相似文献   

13.
Crystallographic, magnetic, and NMR properties of a Na1CoO2 single crystal with x approximately = 1 are presented. We identify the stoichiometric Na1CoO2 phase, which is shown to be a nonmagnetic insulator, as expected for homogeneous planes of Co3+ ions with S = 0. In addition, we present evidence that, because of slight average Na deficiency, chemical and electronic phase separation leads to a segregation of Na vacancies into the well-defined, magnetic, Na0.8CoO2 phase. The importance of phase separation is discussed in the context of magnetic order for x approximately = 0.8 and the occurrence of a metal-insulator transition for x --> 1.  相似文献   

14.
Using muon spin spectroscopy we have found that, for both NaxCoO(2) (0.6相似文献   

15.
A 59Co NMR study of CoO2, the x=0 end member of AxCoO2 (A=Na,Li,...) cobaltates, reveals a metallic ground state, though with clear signs of strong electron correlations: low-energy spin fluctuations develop at wave vectors q not equal to 0 and a crossover to a Fermi-liquid regime occurs below a characteristic temperature T* approximately 7 K. Despite some uncertainty over the exact cobalt oxidation state in this material, the results show that electronic correlations are revealed as x is reduced below 0.3. The data are consistent with NaxCoO2 being close to the Mott transition in the x-->0 limit.  相似文献   

16.
We report an angular resolved photoemission study of NaxCoO2 with x approximately 0.73 where it is found that the renormalization of the quasiparticle (QP) dispersion changes dramatically upon a rotation from GammaM to GammaK. The comparison of the experimental data to the calculated band structure reveals that the quasiparticle renormalization is most pronounced along the GammaK direction, while it is significantly weaker along the GammaM direction. We discuss the observed anisotropy in terms of multiorbital effects and point out the relevance of magnetic correlations for the band structure of NaxCoO2 with x approximately 0.75.  相似文献   

17.
We show using density functional calculations that the small e'g Fermi surfaces in NaxCoO2 are destroyed by Na disorder. This provides a means to resolve the prediction of these sections in band structure calculations with their nonobservation in angle resolved photoemission experiments.  相似文献   

18.
Sodium ion ordering on an in situ cleaved NaxCoO2 (x=0.84) surface has been studied by ultrahigh vacuum scanning tunneling microscopy at room temperature. Three main phases, with p(3 x 3), ( radical7 x radical7), and (2 radical3 x 2 radical3) hexagonal unit cells and a surface Na concentration of 1/3, 3/7, 1/2, respectively, were identified. One surprising finding is that Na trimers act as the basic building blocks that order in long range. The stability of Na trimers is attributed to the increased Na coordination with oxygen as indicated by ab initio calculations, and possibly at finite temperature by configuration entropy.  相似文献   

19.
The effect of the substitution of Co2+, Mn2+, and Zn2+ ions for Ni2+ ions on the magnetic, dielectric, and ferroelectric properties of vanadate single crystals (Ni1 − x T x )3V2O8 has been analyzed. It has been found that the low-level (x ≤ 0.1) substitution of both magnetic and nonmagnetic ions stabilizes the ferroelectric state with a cycloidal magnetic structure. The existence region of this state is expanded to low temperatures down to 3 K for Zn2+ and below 1.8 K for Co2+ and Mn2+ owing to the suppression of a low-temperature weak ferromagnetic phase. At the same time, the ferroelectric phase disappears completely at large concentrations of Co and Mn. The effect of magnetic fields on the magnetic and ferroelectric states has been analyzed. It has been shown that the magnetic field along the c axis suppresses the ferroelectric state, whereas the magnetization along the antiferromagnetism axis (a axis) induces the reentrant phase transition from a paraelectric weak ferromagnetic structure to a ferroelectric structure. The corresponding H-T phase diagrams have been drawn.  相似文献   

20.
We probed the local electronic properties of the mixed-valent Co+4-x triangular lattice in NaxCoO2.yH(2)O by 59Co NMR. We observed two distinct types of Co sites for x > or =1/2, but the valence seems averaged out for x approximately 1/3. Local spin fluctuations exhibit qualitatively the same trend down to approximately 100 K regardless of the carrier concentration x, and hence the nature of the electronic ground state. A canonical Fermi-liquid behavior emerges below approximately 100 K only for x approximately 1/3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号