首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
This paper reports on the experimental results of measuring the time elapsed between the loading and the fracture of ferroelectric ceramic specimens under the action of a static electric field and mechanical stresses that differ in magnitude. The dependence of the durability of the specimens on the applied stress is determined for electric fields in the range from 0 to 5 MV/m. It is shown that, in the time range 1–103 s, the durability of the ferroelectric ceramic material substantially increases in weak electric fields (the hardening effect) and significantly decreases in strong electric fields. The results obtained can be explained in terms of the fact that the load and the electric field affect the same defects (fracture nuclei) in the ferroelectric ceramics.  相似文献   

2.
We describe a first-principles, easy-to-implement, and efficient approach for determining the structural geometry of insulating solids under finite electric fields. This method consists of simultaneously minimizing the field-induced total ionic forces and the electric free energy. Moreover, we present a theory to analyze its predictions that provides a microscopic understanding of electro-mechanical responses in materials. We illustrate this approach by computing piezoelectric and dielectric responses of two rather different compounds, namely, ferroelectric PbTiO3 and semiconductor GaN.  相似文献   

3.
We report the acoustic imaging frequency dynamics of ferroelectric domains by low-frequency acoustic probe microscopy based on the commercial atomic force microscopy. It is found that ferroelectric domain could be firstly visualized at lower frequency down to 0.5 kHz by AFM-based acoustic microscopy. The frequency-dependent acoustic signal revealed a strong acoustic response in the frequency range from 7kHz to 10 kHz, and reached maximum at 8.1 kHz. The acoustic contrast mechanism can be ascribed to the different elastic response of ferroelectric microstructures to local elastic stress fields, which is induced by the acoustic wave transmitting in the sample when the piezoelectric transducer is vibrating and exciting acoustic wave under ac electric fields due to normal piezoelectric effects.  相似文献   

4.
《Comptes Rendus Physique》2015,16(2):168-181
The control of magnetism by electric fields is an important goal for future low-power spintronics devices. This partly explains the intensified recent interest for magnetoelectric multiferroic materials and heterostructures. The lack of ferro- or ferrimagnetic–ferroelectric materials with large magnetoelectric coupling between the two orders has spurred intensive research on artificial multiferroics combining ferroelectric or piezoelectric materials and ferromagnets. In this paper we review synthetically the potential of thin-film-based heterostructures in which a magnetic film is in contact with a ferroelectric or piezoelectric one to obtain an electric control of magnetic properties. This electric control either results from a strain-induced magnetoelectric coupling, a charge-driven one, or from the modulation of an interfacial exchange-bias interaction.  相似文献   

5.
It has been widely accepted that electric fields favor the ferroelectric phase with parallel electric dipoles over the antiferroelectric phase. With detailed measurements in polycrystalline ceramics of Pb(0.99)Nb(0.02[(Zr(0.57)Sn(0.43)(1-y)Ti(y)](0.98)O(3), we demonstrate in this Letter that electric fields can induce an antiferroelectric phase out of a ferroelectric phase, i.e., trigger an apparently unlikely ferroelectric-to-antiferroelectric phase transition. We suggest that it is caused by the volume contraction from the converse piezoelectric effect at the coercive field with a reversed polarity.  相似文献   

6.
The coupling of the mesogenic tilt in smectic liquid crystals to external electric fields in the layer plane (electroclinic effect) provides an opportunity to control the smectic layer thickness with electric fields. In ordered ferroelectric smectic elastomers it is possible to achieve a macroscopic electromechanical response. The effect is particularly pronounced near the smectic A-to-smectic C* phase-transition temperature. In this work, the electrostriction of weakly cross-linked smectic elastomers is studied by means of optical interferometry of thin films. Its observed magnitude corresponds to an induced tilt of approximately 7.7°, yielding a layer contraction of 1%, in a 3 MV/m electric field. This value is in agreement with earlier measurements of tilt susceptibility in a structurally similar polymer, but is considerably smaller than previously reported data on elastomers with a comparable chemical structure. PACS 61.30.Vx; 83.80.Va; 77.65.Bn  相似文献   

7.
Nanosecond domain wall dynamics in ferroelectric Pb(Zr, Ti)O(3) thin films   总被引:1,自引:0,他引:1  
Domain wall motion during polarization switching in ferroelectric thin films is fundamentally important and poses challenges for both experiments and modeling. We have visualized the switching of a Pb(Zr, Ti)O(3) capacitor using time-resolved x-ray microdiffraction. The structural signatures of switching include a reversal in the sign of the piezoelectric coefficient and a change in the intensity of x-ray reflections. The propagation of polarization domain walls is highly reproducible from cycle to cycle of the electric field. Domain wall velocities of 40 m s(-1) are consistent with the results of other methods, but are far less than saturation values expected at high electric fields.  相似文献   

8.
王歆钰  储瑞江  魏胜男  董正超  仲崇贵  曹海霞 《物理学报》2015,64(11):117701-117701
基于Laudau-Devonshire的热动力学模型, 计算了EuTiO3铁电薄膜材料的电热效应. 结果显示在外加应力的调控下, 电极化、电热系数以及绝热温差都会随之变化. 外加垂直于表面的张应力加大, 薄膜的相变温度升高, 绝热温差增加, 最大绝热温差所对应的工作温度向高温区移动. 对于二维平面失配应变um =-0.005的薄膜, 当外加张应力σ3 = 5 GPa时, 其最大电热系数为1.75×10-3 C/m2·K, 电场变化200 MV/m 时室温下绝热温差ΔT 的最大值可达到14 K 以上, 绝热温差ΔT ≥13 K 的工作温区超过120 K, 表明可以通过调控外部应力来获取室温时较大的绝热温差. 此结果预示着铁电EuTiO3 薄膜在室温固态制冷方面可能具有较好的应用前景.  相似文献   

9.
The characteristics of the magnetoelectric interaction in a planar nickel-lead-zirconate-titanate structure have been studied in a dc electric field applied to the ferroelectric layer. A hysteretic field dependence of the efficiency and frequency of the resonant magnetoelectric interaction has been revealed, and the vanishing of the interaction efficiency in the range of polarization switching fields due to changes in the permittivity, the piezoelectric modulus, and the dielectric loss of the ferroelectric has been observed. It has been shown that the electric field leads to a significant change in the rigidity of the ferroelectric layer.  相似文献   

10.
In this paper, we demonstrate that a sol-gel-derived lead zirconate titanate film can be depolarized by the application of ac fields of diminishing amplitude, and we explain the phenomenon based on the concept of the Preisach model. The amplitude of the ac fields is decreased from 19.5 MV/m to 0.2 MV/m in eight steps. The observed piezoelectric coefficient of the film decreases after each step and finishes with almost the same value as that of an as-deposited film. Our results also reveal the existence of a distribution of coercive fields in the microdomains (Preisach dipolar units), and that the P–E loop of each microdomain is shifted by interaction fields so that the magnitudes of its switch-up and switch-down fields are not necessarily the same. PACS 77.22.Ej; 77.70.+a; 77.90.+k  相似文献   

11.
12.
13.
BiFeO3–BaTiO3 (BF-BT) lead-free piezoelectric system has been paid much attention due to good piezoelectric properties and high Curie temperature. Poling is a process to align ferroelectric domains and increase the piezoelectric coefficients. During the poling process, unipolar direct current (dc) electric fields were applied conventionally, but recently bipolar alternating current (ac) cycling was reported to improve piezoelectric properties in rhombohedral structure piezoelectric materials. We investigated the effects of dc-poling and ac-cycling in BF-BT ceramics. The d33 increased from 210 pC/N with dc-poling to 240 pC/N with ac-cycling in the morphotropic phase boundary region of BF-BT with domain engineering. This improvement of piezoelectric properties with ac-cycling was consistent with the structural evolution related to ferroelectric domains.  相似文献   

14.
The electric field of incident light induces dipoles in anisotropic media, vibrating in two perpendicular directions of the principal axes. Because of the tensor property of the dielectric constant, an induced dipole is subject to a torque, tending to rotate it about the axis parallel to the propagation direction. The directions of eigenvibration of the ordinary (o-ray) and extraordinary (e-ray) waves are no longer perpendicular in this sense. We propose here the relationships to describe the rotation of the induced dipole in the perpendicular electric fields. The rotation angles are found to increase with increasing dielectric constants and electric field strength of the incident light, exhibiting large values near the resonance frequencies in the infrared range at the azimuth angle /4 of the polarized incident light. Piezoelectric and ferroelectric crystals have a large value of the dielectric constant in the infrared frequency range. Rotations of the vibration direction of the o-ray and the e-ray waves are shown in the infrared transmission spectra recorded by incidence of the polarized light and transmission through piezoelectric and ferroelectric crystals (-quartz, LiNbO3, and LiTaO3). Interference of the o-ray and the e-ray waves transmitted through the crystals confirms the rotations of the vibration directions, a self-modulation effect of light in piezoelectric and ferroelectric crystals induced by the electric field of the propagating light.  相似文献   

15.
由于具有优异的压电性能,弛豫铁电单晶自上世纪90年代问世以来即成为了铁电压电领域研究的热点材料,并被认为是研发下一代高性能换能器、传感器等器件的重要压电材料。弛豫铁电单晶不但压电常数可达2500 pC/N,约为软性Pb(Zr,Ti)O3(PZT)陶瓷的5倍,而且其电致应变滞后也远小于软性PZT陶瓷。因此,弛豫铁电单晶高压电性能的产生机理一直是铁电压电领域的研究热点。本文主要介绍了弛豫铁电单晶材料在近些年的发展,从本征压电效应(晶格压电畸变)的角度归纳总结了弛豫铁电单晶高压电效应的产生机理,着重探讨了弛豫铁电单晶的重要特点—剪切压电效应。在本征效应的基础上,本文对弛豫铁电单晶压电效应与晶体组分、切向以及温度的关系进行了分析。需要指出的是,目前基于本征角度对弛豫铁电单晶高压电效应的分析仍处于定性的阶段,因而还不能完全排除一些可能导致弛豫铁电单晶高压电效应的非本征物理机制。  相似文献   

16.
The piezoelectric response of BiFeO3 at low temperature has been investigated by Raman scattering measurements. The application of an external electric field at T=10 K induces frequency shifts of the lowest frequency mode related to the Bi-O bonds and corresponding to the soft mode of the ferroelectric transition. The piezoelectric effect is responsible for the softening of this mode via the tensile stress leading to the expansion of the crystal. The phonon deformation potential associated with the soft mode has been estimated around −200 cm−1/strain units using the linear piezoelectric coefficient d33=16 pm/V. It found in the range of the ones obtained for typical piezoelectrics.  相似文献   

17.
《Current Applied Physics》2014,14(3):331-336
Lead-free piezoelectric ceramics (1 − x)Bi0.5Na0.5TiO3xBaZrO3 (BNT–BZ100x, with x = 0–0.10) were prepared using a conventional solid-state reaction method. The crystal structure, microstructure, dielectric, ferroelectric, and piezoelectric properties of BNT–BZ100x ceramics were studied as functions of different BZ content. X-ray diffraction patterns revealed that the BZ completely diffused in the BNT lattice in the studied composition range. An appropriate amount of BZ addition improved the dielectric, ferroelectric, and piezoelectric properties of BNT ceramics. The remanent polarization (Pr) and piezoelectric constant (d33) increased from 22 μC/cm2 and 60 pC/N for pure BNT to 30 μC/cm2 and 112 pC/N for x = 0.040, respectively. In addition, electric field-induced strain was enhanced to its maximum value (Smax = 0.40%) with normalized strain (d*33 = Smax/Emax = 500 pm/V) at an applied electric field of 8 kV/mm for x = 0.055. The enhanced strain can be attributed to the coexistence of ferroelectric and relaxor ferroelectric phases.  相似文献   

18.
The threshold electric field for runaway generation has been investigated during runaway suppression experiments by means of electron-cyclotron-resonance heating in the flattop phase of FTU discharges. Runaway suppression has been experimentally found to occur at electric fields substantially larger than those predicted by the relativistic collisional theory of runaway generation, ER=nee3lnΛ/4πε0(2)mec2. These experimental results are consistent with an increase of the critical electric field due to the electron synchrotron radiation losses. No runaway electrons are found in FTU experiments below the radiation threshold. These results support evidence for a new threshold electric field for runaway generation that accounts for the effect of the synchrotron losses, and which should be considered when making predictions on runaway generation and mitigation in devices such as ITER.  相似文献   

19.
In this paper we present new experiments on the switching of the polarization in thin (<1 m) ferroelectric copolymer films of P(VDF-TrFE). We observed an unexpectedly short switching time for these thin films: The polarization of a 0.2 m thick film could be reversed by poling fields of 600 MV/m in less than 100 ns. This result which may revive interest in ferroelectric data storage is discussed in terms of a switching process which also involves the ohmic conductivity of the sample.  相似文献   

20.
武峥  周嘉仪  曹艺  马柯  贾艳敏  张以河 《物理学报》2014,63(2):27701-027701
1-3压电复合材料的压电、介电及铁电性能要远远优于0-3压电复合材料.在制备传统的0-3复合材料过程中引入电泳技术,使得压电颗粒在聚合物基体中取向排列,制备得到伪1-3复合材料.实验结果表明:在制备PZT/环氧树脂0-3复合压电材料固化过程中,采用500 V/mm,4 kHz的电场对其进行电泳辅助取向,可使得颗粒呈现珍珠串状排列,得到伪1-3复合材料;其压电、介电、铁电性能均比原来的0-3复合材料有显著的提高.电泳辅助制备技术用于制备伪1-3复合压电材料具有操作简单、成本低廉、压电、介电、铁电性能显著提高等优点,在智能传感领域具有很好的实际应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号