首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficient nanopowder processing requires knowledge of the powder’s mechanical properties. Due to the large surface area to volume ratio, nanoparticles experience relatively strong attractive interactions, leading to the formation of micron-size porous structures called agglomerates. Significant effort has been directed towards the development of models and experimental procedures to estimate the elasticity of porous objects such as nanoparticle agglomerates; however, none of the existing models has been validated for solid fractions below 0.1. Here, we measure the elasticity of titania (TiO\(_2\), 22 nm), alumina (Al\(_2\)O\(_3\), 8 nm), and silica (SiO\(_2\), 16 nm) nanopowder agglomerates by Atomic Force Microscopy, using a 3.75 \(\upmu\)m glass colloid for the stress–strain experiments. Three sample preparations with varying degree of powder manipulation are assessed. The measured Young’s moduli are in the same order of magnitude as those predicted by the model of Kendall et al., thus validating it for the estimation of the Young’s modulus of structures with porosity above 90 %.  相似文献   

2.
Experiments on the interaction of metal targets with a Nd:YAG laser beam ( \(\lambda \)  = 1,064 nm, intensity \(10^{10}\) \(10^{11}\,\hbox {W/cm}{^2}\) ) are carried out in a finite Nitrogen pressure environment. The observed \(\hbox {N}_2\) spectra are unambiguous evidence of the existence of an ionization and excitation source, arriving at the observation volume prior to the plume. Such a source can be either prompt electrons or VUV radiation. The analysis reveals that the prompt electron interpretation requires energies in excess of 1 keV, incompatible with any acceleration mechanisms relevant for such laser intensities. On the other hand, VUV radiation is sufficiently strong to explain the observed spectra.  相似文献   

3.
Trivalent holmium-doped K–Sr–Al phosphate glasses ( $\mathrm{P}_{2}\mathrm{O}_{5}$ $\mathrm{K}_{2}\mathrm{O}$ –SrO– $\mathrm{Al}_{2}\mathrm{O}_{3}$ $\mathrm{Ho}_{2}\mathrm{O}_{3}$ ) were prepared, and their spectroscopic properties have been evaluated using absorption, emission, and excitation measurements. The Judd–Ofelt theory has been used to derive spectral intensities of various absorption bands from measured absorption spectrum of 1.0 mol% $\mathrm{Ho}_{2}\mathrm{O}_{3}$ -doped K–Sr–Al phosphate glass. The Judd–Ofelt intensity parameters ( $\varOmega_{\lambda}$ , $\times10^{-20}~\mathrm{cm}^{2}$ ) have been determined of the order of $\varOmega_{2} = 11.39$ , $\varOmega_{4} = 3.59$ , and $\varOmega_{6} = 2.92$ , which in turn used to derive radiative properties such as radiative transition probability, radiative lifetime, branching ratios, etc. for excited states of $\mathrm{Ho}^{3+}$ ions. The radiative lifetimes for the ${}^{5}F_{4}$ , ${}^{5}S_{2}$ , and ${}^{5}F_{5}$ levels of $\mathrm{Ho}^{3+}$ ions are found to be 169, 296, and 317 μs, respectively. The stimulated emission cross-section for 2.05-μm emission was calculated by the McCumber theory and found to be $9.3\times10^{-2 1}~\mathrm{cm}^{2}$ . The wavelength-dependent gain coefficient with population inversion rate has been evaluated. The results obtained in the titled glasses are discussed systematically and compared with other $\mathrm{Ho}^{3+}$ -doped systems to assess the possibility for visible and infrared device applications.  相似文献   

4.
Magnetism in Cu-doped, Cu \(\rm _{Si}\) –V \(\rm _{Si}\) codoped, or Cu \(\rm _{Si}\) –V \(\rm _{C}\) codoped 6H-SiC are investigated using the first principle. The total density of states for the ferromagnetic Cu \(\rm _{Si}\) at doping concentration of 0.926 at. \(\%\) shows half-metallic behavior, which leads to the total magnetic moment of 2.84  \(\rm \mu _{B}\) per supercell. The total magnetic moment increases with increasing Cu content. The long-range ferromagnetic interaction between Cu atoms can be attributed to the C-mediated double exchange through the strong \(3d\) ? \(2p\) interaction between Cu and neighboring C ones. It is important to note that both V \(\rm _{Si}\) and V \(\rm _{C}\) play a negative role in ferromagnetic coupling between Cu ions. So, to obtain a larger magnetic moment from Cu-doped 6H–SiC, we should try to avoid the appearance of V \(\rm _{Si}\) and V \(\rm _{C}\) during the process of sample preparation. Our theoretical calculations give a valuable insight on how to get a large magnetic moment from Cu-doped 6H–SiC.  相似文献   

5.
Spectral crosstalk suppressing design of two-color HgCdTe medium-wave/long-wave (MW/LW) \(\hbox {n}^{+}\) \(\hbox {p}_{1}\) \(\hbox {P}_{2}\) \(\hbox {P}_{3}\) \(\hbox {N}^{+}\) infrared focal plane arrays (IRFPAs) detector functioning in simultaneous mode is carried out in this study, using Crosslight Technology Computer Aided Design (TCAD) software. A compositional barrier of \(\hbox {P}_{2}\) -region sandwiched between LW absorption layer of \(\hbox {p}_{1}\) -region and MW absorption layer of \(\hbox {P}_{3}\) -region is designed to suppress spectral crosstalk. MW-to-LW crosstalk can be significantly suppressed to 2.1 % while LW-to-MW crosstalk can be maintained less than 1 % by integrating an optimized compositional barrier.  相似文献   

6.
The nonmesonic weak decay spectra of light hypernuclei have been evaluated in a systematic way. As theoretical framework we adopt the independent particle shell model with three different one-meson-exchange transition potentials. Good agreement with data is obtained for proton and neutron kinetic energy spectra of ${^4_\Lambda}$ He, and ${^5_\Lambda}$ He, when the recoil effect is considered. The coincidence spectra of proton-neutron pairs are also accounted for quite reasonably, but it was not possible to reproduce the data for the neutron–neutron pair spectra. It is suggested that the π + K meson-exchange model with soft monopole form factors could be a good starting point for describing the dynamics responsible for the decays of these two hypernuclei. The ${^4_\Lambda}$ H spectra are also presented.  相似文献   

7.
The theoretical calculations indicated that the monoclinic low-temperature phase of silver telluride $(\upbeta \hbox {-Ag}_{2}\hbox {Te})$ is a new binary topological insulator with highly anisotropic single Dirac cone surface. We obtained $\upbeta \hbox {-Ag}_{2}\hbox {Te}$ crystal ingots containing few grains by the Bridgman method. We also deposited thin films of tellurium, $\hbox {Ag}_{5}\hbox {Te}_{3}\hbox { and }(\hbox {Te+Ag}_{5}\hbox {Te}_{3})$ by thermal evaporation method. The Raman spectra of $\upbeta \hbox {-Ag}_{2}\hbox {Te}$ , tellurium and $\hbox {Ag}_{5}\hbox {Te}_{3}$ were measured at three excitation wave lengths: 633, 515 and 488 nm. The Raman active modes of $\upbeta \hbox {-Ag}_{2}\hbox {Te}$ , tellurium and $\hbox {Ag}_{5}\hbox {Te}_{3}$ are situated at frequencies below 300  $\hbox {cm}^{-1}$ while vibrations of other phases appear at higher frequencies.  相似文献   

8.
The temperature dependence of the Raman spectrum in LiNbO \(_3\) is investigated from 100 to 700 K. The various sources of asymmetry of Raman bands and artefacts are discussed before analyzing the temperature dependence of A \(_1\) and E first-order phonon lines. The phonon frequency downshift and damping increase on heating are interpreted in terms of normal volume expansion and third- and fourth-order anharmonic potentials. Anharmonic contributions are highly anisotropic and mainly explain the temperature dependences of both frequency and damping of A \(_1\) optical vibrational modes along the ferroelectric axis. Results are consistent with Caciuc et al. (Phys Rev B 61:8806, 2000) predictions.  相似文献   

9.
In the present work, we have studied the structural, dielectric, and electrical properties of a series of nanosized $\mathrm{ZnAl}_{2-2x}\mathrm{Y}_{2x}\mathrm{O}_{4}$ ( $x = 0.00$ , 0.01, 0.02, 0.03, 0.04, 0.05, 0.07, and 0.10) system prepared by chemical coprecipitation method. Powder X-ray diffraction (XRD) was carried out to study the influence of $\mathrm{Y}^{3+}$ substitution on the crystal structure of these samples. High Resolution Transmission Electron Microscopy (HRTEM) images reveal the nanocrystalline nature of the samples. The Fourier Transform Infrared (FTIR) spectra confirmed the preference of $\mathrm{Y}^{3+}$ ions at the octahedral B site. The variation of dielectric constant and loss tangent (1 kHz to 1 MHz) at room temperature for all the samples show the normal behavior of spinel compounds. AC conductivity study reveals that the conduction is due to small polaron hopping. The electrical modulus analysis shows that nanocrystalline $\mathrm{ZnAl}_{2-2x}\mathrm{Y}_{2x}\mathrm{O}_{4}$ system exhibits non-Debye-type relaxation. The DC electrical resistivity measured in the temperature range 303–373 K was found to increase with temperature and yttrium content.  相似文献   

10.
We report on characterization of a large solid core, photonic crystal fiber dedicated to broadband transmission range from visible to mid-infrared. We have fabricated a multi-mode photonic crystal fiber, made of a heavy metal-oxide glass based on the $\hbox {PbO}{-}\hbox {Bi}_{2}\hbox {O}_{3}{-}\hbox {Ga}_{2}\hbox {O}_{3}$ system, modified with $\hbox {SiO}_{2}$ and CdO, synthesized in-house, which shows good transmission up to $4.5\,\upmu \hbox {m}$ , as well as good rheological properties that permit multiple thermal processing steps without crystallization. The core of the fiber is created by replacement of central 60 tubes with solid rods. The photonic cladding is composed of 8 rings of air holes with a filling factor of 0.42. Simulation results shows that the fiber can be used for broadband transmission in the range of 430–3,000 nm. Calculated effective mode area of the fiber is $295\,\upmu \hbox {m}^{2}$ . We have measured attenuation of the fiber in the range 800–1,700 nm and its sensitivity to bending losses. Attenuation ranges from 1 to 4 dB/m in the considered range and bending losses are below 0.7 dB.  相似文献   

11.
In this work, we present a study of the magneto transport properties in magnetic multilayered structure $\text{ Ni }_{81}\text{ Fe }_{19}\text{/Zr }$ Ni 81 Fe 19 /Zr . The magnetic $(\text{ Ni }_{81}\text{ Fe }_{19})$ ( Ni 81 Fe 19 ) and non magnetic (Zr) layer thickness $(\mathbf{t}_\mathbf{NiFe}, \mathbf{t}_\mathbf{zr})$ ( t NiFe , t zr ) effects on the magneto resistance (MR) are discussed theoretically in the framework of the Johnson–Camley semi classical approach based on the Boltzmann transport equation. A comparison between calculated and measured MR is obtained. The observed MR ratio oscillates for Zr layer thickness with an average period of 7Å. A generally weak $\text{ MR }(\text{ t }_{\mathrm{NiFe}})$ MR ( t NiFe ) ratio for fixed $\mathbf{t}_\mathbf{zr}$ t zr is obtained and it shows a maxima peak of the MR with a value of 1.8 % located at $\mathbf{t}_\mathbf{NiFe}= 80$ t NiFe = 80 Å.  相似文献   

12.
We consider the problem of existence of asymptotic observables in local relativistic theories of massive particles. Let ${\tilde{p}_1}$ and ${\tilde{p}_2}$ be two energy-momentum vectors of a massive particle and let ${\Delta}$ be a small neighbourhood of ${\tilde{p}_1 + \tilde{p}_2}$ . We construct asymptotic observables (two-particle Araki–Haag detectors), sensitive to neutral particles of energy-momenta in small neighbourhoods of ${\tilde{p}_1}$ and ${\tilde{p}_2}$ . We show that these asymptotic observables exist, as strong limits of their approximating sequences, on all physical states from the spectral subspace of ${\Delta}$ . Moreover, the linear span of the ranges of all such asymptotic observables coincides with the subspace of two-particle Haag–Ruelle scattering states with total energy-momenta in ${\Delta}$ . The result holds under very general conditions which are satisfied, for example, in ${\lambda{\phi}_{2}^{4}}$ . The proof of convergence relies on a variant of the phase-space propagation estimate of Graf.  相似文献   

13.
We study the evolution of phase-transition-generated cosmic magnetic fields coupled to the primeval cosmic plasma in the turbulent and viscous free-streaming regimes. The evolution laws for the magnetic energy density and the correlation length, both in the helical and the non-helical cases, are found by solving the autoinduction and Navier–Stokes equations in the mean-field approximation. Analytical results are derived in Minkowski spacetime and then extended to the case of a Friedmann universe with zero spatial curvature, both in the radiation- and the matter-dominated era. The three possible viscous free-streaming phases are characterized by a drag term in the Navier–Stokes equation which depends on the free-streaming properties of neutrinos, photons, or hydrogen atoms, respectively. In the case of non-helical magnetic fields, the magnetic intensity $B$ and the magnetic correlation length $\xi _B$ evolve asymptotically with the temperature, $T$ , as $B(T) \simeq \kappa _B (N_i v_i)^{\varrho _1} (T/T_i)^{\varrho _2}$ and $\xi _B(T) \simeq \kappa _\xi (N_i v_i)^{\varrho _3} (T/T_i)^{\varrho _4}$ . Here, $T_i$ , $N_i$ , and $v_i$ are, respectively, the temperature, the number of magnetic domains per horizon length, and the bulk velocity at the onset of the particular regime. The coefficients $\kappa _B$ , $\kappa _\xi $ , $\varrho _1$ , $\varrho _2$ , $\varrho _3$ , and $\varrho _4$ , depend on the index of the assumed initial power-law magnetic spectrum, $p$ , and on the particular regime, with the order-one constants $\kappa _B$ and $\kappa _\xi $ depending also on the cutoff adopted for the initial magnetic spectrum. In the helical case, the quasi-conservation of the magnetic helicity implies, apart from logarithmic corrections and a factor proportional to the initial fractional helicity, power-like evolution laws equal to those in the non-helical case, but with $p$ equal to zero.  相似文献   

14.
$\hbox {In}_{2}\hbox {S}_{3}$ thin films have been elaborated onto glass substrate by SILAR method at room temperature using different immersion time in the solution of cation and anion and fixing the rinsing time. The film composition, morphology and structure were investigated using energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM) and X-ray diffraction techniques. Optical properties, such transmission and band gap have been also analyzed. The effects of annealing on the morphological structure thin films are also described. The x-rays diffraction spectra indicated that the formed compounds are $\upbeta $ - $\hbox {In}_{2}\hbox {S}_{3}$ polycrystalline thin films with $\hbox {In}_{6}\hbox {S}_{7 }$ as second phase in sample S1 and sample S2 and no another phase in sample 3. SEM revealed homogeneous and relatively uniform films and EDAX shows sample 3 with S/In=1.44. For sample 1 and sample 2, we noted an increase of band gap when rinsing time increases.  相似文献   

15.
We rely on a recent method for determining edge spectra and we use it to compute the Chern numbers for Hofstadter models on the honeycomb lattice having rational magnetic flux per unit cell. Based on the bulk-edge correspondence, the Chern number \(\sigma _\mathrm{H}\) is given as the winding number of an eigenvector of a \(2 \times 2\) transfer matrix, as a function of the quasi-momentum \(k\in (0,2\pi )\) . This method is computationally efficient (of order \(\mathcal {O}(n^4)\) in the resolution of the desired image). It also shows that for the honeycomb lattice the solution for \(\sigma _\mathrm{H}\) for flux \(p/q\) in the \(r\) -th gap conforms with the Diophantine equation \(r=\sigma _\mathrm{H}\cdot p+ s\cdot q\) , which determines \(\sigma _\mathrm{H}\mod q\) . A window such as \(\sigma _\mathrm{H}\in (-q/2,q/2)\) , or possibly shifted, provides a natural further condition for \(\sigma _\mathrm{H}\) , which however turns out not to be met. Based on extensive numerical calculations, we conjecture that the solution conforms with the relaxed condition \(\sigma _\mathrm{H}\in (-q,q)\) .  相似文献   

16.
Newman’s measure for (dis)assortativity, the linear degree correlation coefficient $\rho _{D}$ , is reformulated in terms of the total number N k of walks in the graph with k hops. This reformulation allows us to derive a new formula from which a degree-preserving rewiring algorithm is deduced, that, in each rewiring step, either increases or decreases $\rho _{D}$ conform our desired objective. Spectral metrics (eigenvalues of graph-related matrices), especially, the largest eigenvalue $\lambda _{1}$ of the adjacency matrix and the algebraic connectivity $\mu _{N-1}$ (second-smallest eigenvalue of the Laplacian) are powerful characterizers of dynamic processes on networks such as virus spreading and synchronization processes. We present various lower bounds for the largest eigenvalue $\lambda _{1}$ of the adjacency matrix and we show, apart from some classes of graphs such as regular graphs or bipartite graphs, that the lower bounds for $\lambda _{1}$ increase with $\rho _{D}$ . A new upper bound for the algebraic connectivity $\mu _{N-1}$ decreases with $\rho _{D}$ . Applying the degree-preserving rewiring algorithm to various real-world networks illustrates that (a) assortative degree-preserving rewiring increases $\lambda _{1}$ , but decreases $\mu _{N-1}$ , even leading to disconnectivity of the networks in many disjoint clusters and that (b) disassortative degree-preserving rewiring decreases $\lambda _{1}$ , but increases the algebraic connectivity, at least in the initial rewirings.  相似文献   

17.
$(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ $(x=0.07, 0.09, 0.16, 0.22, 0.31)$ films were deposited on Si (100) substrates by RF-magnetron sputtering technique. The influence of Fe doping on the local structure of films was investigated by X-ray absorption spectroscopy (XAS) at Fe K-edge and L-edge. For the $(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ films with $x=0.07, 0.09 \mbox{ and } 0.16$ , Fe ions dissolve into $\mathrm{In}_{2}\mathrm{O}_{3}$ and substitute for $\mathrm{In}^{3+}$ sites with a mixed-valence state ( $\mathrm{Fe}^{2+}/\mathrm{Fe}^{3+}$ ) of Fe ions. However, a secondary phase of Fe metal clusters is formed in the $(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ films with $x=0.22 \mbox{ and } 0.31$ . The qualitative analyses of Fe-K edge extended X-ray absorption fine structure (EXAFS) reveal that the Fe–O bond length shortens and the corresponding Debye–Waller factor ( $\sigma^{2}$ ) increases with the increase of Fe concentration, indicating the relaxation of oxygen environment of Fe ions upon substitution. The anomalously large structural disorder and very short Fe–O distance are also observed in the films with high Fe concentration. Linear combination fittings at Fe L-edge further confirm the coexistence of $\mathrm{Fe}^{2+}$ and $\mathrm{Fe}^{3+}$ with a ratio of ${\sim}3:2$ ( $\mathrm{Fe}^{2+}: \mathrm{Fe}^{3+}$ ) for the $(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ film with $x=0.16$ . However, a significant fraction ( ${\sim}40~\mbox{at\%}$ ) of the Fe metal clusters is found in the $(\mathrm{In}_{1-x}\mathrm{Fe}_{x})_{2}\mathrm{O}_{3}$ film with $x=0.31$ .  相似文献   

18.
We consider the block band matrices, i.e. the Hermitian matrices $H_N$ , $N=|\Lambda |W$ with elements $H_{jk,\alpha \beta }$ , where $j,k \in \Lambda =[1,m]^d\cap \mathbb {Z}^d$ (they parameterize the lattice sites) and $\alpha , \beta = 1,\ldots , W$ (they parameterize the orbitals on each site). The entries $H_{jk,\alpha \beta }$ are random Gaussian variables with mean zero such that $\langle H_{j_1k_1,\alpha _1\beta _1}H_{j_2k_2,\alpha _2\beta _2}\rangle =\delta _{j_1k_2}\delta _{j_2k_1} \delta _{\alpha _1\beta _2}\delta _{\beta _1\alpha _2} J_{j_1k_1},$ where $J=1/W+\alpha \Delta /W$ , $\alpha < 1/4d$ . This matrices are the special case of Wegner’s $W$ -orbital models. Assuming that the number of sites $|\Lambda |$ is finite, we prove universality of the local eigenvalue statistics of $H_N$ for the energies $|\lambda _0|< \sqrt{2}$ .  相似文献   

19.
The present work is aimed to compare the physical properties of $\mbox{Sn}_{1-x} \mbox{Fe}_x \mbox{O}_{2-\delta } $ (x?=?0, and 0.05) nanopowders obtained by sol–gel method, mechanochemical alloying, and mechanochemical alloying followed by thermal treatment. The X-ray diffraction of $\mbox{Sn}_{1-x} \mbox{Fe}_x \mbox{O}_{2-\delta } $ samples prepared by sol–gel showed peaks due to the cassiterite phase of SnO2 and thier Mössbauer spectra showed ferromagnetic and paramagnetic signals. The samples obtained by the milling process of SnO2 mixed with $\upalpha $ -Fe showed Bragg peaks due to SnO2 (rutile) with a line broadening caused by the reduction of grain sizes and the presence of microstrains. Mössbauer spectra for these samples revealed the presence of Fe3?+? as well as unreacted $\upalpha $ -Fe. In the case of mechanochemical alloying with thermal treatment, the incorporation of Fe3?+? in the SnO2 structure with the presence of impurities was observed.  相似文献   

20.
In this work, a novel and practical configuration as a hybrid plasmonic–photonic coupler based on silicon (Si) nanofibers, silica waveguides and metal nanoparticles is examined and investigated. All of utilized waveguides, fibers and nanoparticles are embedded in an \(\hbox {Mg}_{2}\hbox {F}\) crystal host. Integrated plasmonic–photonic coupler provides significant transmission efficiency during guiding and propagating of light. Utilizing enhanced plasmonic waveguides helps to reduce the inherent losses such as scattering into the far-field and absorption of optical power inside the employed components, especially in nanoparticles. The transmission loss component under transverse electric excitation (TE) for the superstructure has been calculated as approximately \(\gamma _{T}=3\,\hbox {dB}/675\)  nm. Also, we investigate the coupling efficiency at overlapping regions between Si nanofibers and silica ( \(\hbox {SiO}_{2})\) waveguides which is referred to near-field interactions. Transmitted power ratio and the group velocity of the propagated light are computed and depicted for the proposed coupler.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号