首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we obtain violations of general bipartite Bell inequalities of order \({\frac{\sqrt{n}}{\log n}}\) with n inputs, n outputs and n-dimensional Hilbert spaces. Moreover, we construct explicitly, up to a random choice of signs, all the elements involved in such violations: the coefficients of the Bell inequalities, POVMs measurements and quantum states. Analyzing this construction we find that, even though entanglement is necessary to obtain violation of Bell inequalities, the entropy of entanglement of the underlying state is essentially irrelevant in obtaining large violation. We also indicate why the maximally entangled state is a rather poor candidate in producing large violations with arbitrary coefficients. However, we also show that for Bell inequalities with positive coefficients (in particular, games) the maximally entangled state achieves the largest violation up to a logarithmic factor.  相似文献   

2.
We introduce inequalities for multipartite entanglement, derived from the geometry of spin vectors. The criteria are constructed iteratively from cross and dot products between the spins of individual subsystems, each of which may have arbitrary dimension. For qubit ensembles the maximum violation for our inequalities is larger than that for the Mermin-Klyshko Bell inequalities, and the maximally violating states are different from Greenberger-Horne-Zeilinger states. Our inequalities are violated by certain bound entangled states for which no Bell-type violation has yet been found.  相似文献   

3.
We investigate the nonlocal properties of graph states. To this aim, we derive a family of Bell inequalities which require three measurement settings for each party and are maximally violated by graph states. In turn, for each graph state there is an inequality maximally violated only by that state. We show that for certain types of graph states the violation of these inequalities increases exponentially with the number of qubits. We also discuss connections to other entanglement properties such as the positivity of the partial transpose or the geometric measure of entanglement.  相似文献   

4.
Bell test had been suggested to end the long-standing debate on the EPR paradox, while the imperfections of experimental devices induce some loopholes in Bell test experiments and hence the assumption of local reality by EPR cannot be excluded with current experimental results. In optical Bell test experiments, the locality loophole can be closed easily, while the attempt of closing detection loophole requires very high efficiency of single photon detectors. Previous studies showed that the violation of Clauser-Horne-Shimony-Holt (CHSH) inequality with maximally entangled states requires the detection efficiency to be higher than 82.8 %. In this paper, we raise a modified CHSH inequality that covers all measurement events including the efficient and inefficient detections in the Bell test and prove that all local hidden models can be excluded when the inequality is violated. We find that, when non-maximally entangled states are applied to the Bell test, the lowest detection efficiency for violation of the present inequality is 66.7 %. This makes it feasible to close the detection loophole and the locality loophole simultaneously in optical Bell test of CHSH inequality.  相似文献   

5.
We propose an experimental scheme to realize the four-dimensional projective measurements tor a single photon. The photon polarization and time-energy provide the four-dimensional Hilbert space. Based on this scheme, we suggest an experiment to test the violation of Bell inequalities of four-dimensional systems. In addition, by virtue of a maximally entangled biphoton state, we also show that it is possible to construct a quantum key distribution channel that can provide two-bit key with one pair of entangled photons.  相似文献   

6.
Bell’s theorem has been widely argued to show that some of the predictions of quantum mechanics which are obtained by applying the Born’s rule to a class of entangled states, are not compatible with any local-causal statistical model, via the violation of Bell’s inequalities. On the other hand, in the previous works, we have shown that quantum dynamics and kinematics are emergent from a statistical model that is singled out uniquely by the principle of Locality. Here we shall show that the local-causal model supports entangled states and give the statistical origin of their generation. We then study the Stern-Gerlach experiment to show that the Born’s rule can also be derived as a mathematical theorem in the local-causal model. These results lead us to argue that nonlocality is not responsible for the quantum mechanical and most importantly experimental violation of Bell’s inequalities. The source(s) of violation has to be sought somewhere else.  相似文献   

7.
We present a much simplified version of the Collins-Gisin-Linden-Massar-Popescu inequality for the 2x2xd Bell scenario. Numerical maximization of the violation of this inequality over all states and measurements suggests that the optimal state is far from maximally entangled, while the best measurements are the same as conjectured best measurements for the maximally entangled state. For very large values of d the inequality seems to reach its minimal value given by the probability constraints. This gives numerical evidence for a tight quantum Bell inequality (or generalized Csirelson inequality) for the 2x2xinfinity scenario.  相似文献   

8.
薛鹏  边志浩 《中国物理 B》2016,25(8):80305-080305
We show a scheme of preparing multipartite W type of maximally entangled states among many atomic ensembles with the generation time increasing with the party number only polynomially. The scheme is based on laser manipulation of atomic ensembles and single-photon detection, and fits well the status of the current experimental technology. We also show one of the applications of this kind of W state, demonstrating Bell theorem without inequalities.  相似文献   

9.
We show that, for a continuous set of entangled four-partite states, the task of maximizing the payoff in the symmetric-strategy four-player quantum Minority game is equivalent to maximizing the violation of a four-particle Bell inequality. We conclude the existence of direct correspondences between (i) the payoff rule and Bell inequalities, and (ii) the strategy and the choice of measured observables in evaluating these Bell inequalities. We also show that such a correspondence is unique to minority-like games.  相似文献   

10.
Orbital angular momentum entangled photons emitted by a down-conversion source are in higher dimensional entangled states. Here we report the experimental confirmation by demonstrating a violation of a generalized Clauser-Horne-Shimony-Holt-type Bell inequality in three dimensions by more than 18 standard deviations. Higher dimensional entangled states allow the realization of new types of quantum communication protocols. They also provide a more secure quantum cryptography scheme. Therefore our experimental results are likely to have applications in future quantum communication technology.  相似文献   

11.
A state-dependent proof of Bell's theorem without inequalities using the product state of any two maximally entangled states (Bell states) of two qubits for two observers in an ideal condition, each of which possesses two qubits, is proposed. It is different from the other proofs in which there exists a fundamental requirement that certain specific suitable Bell states have been chosen. Moreover, in any non-ideal situation, a common Bell inequality independent of the choices of the 16-product states is derived, which is used to test the contradiction between quantum mechanics and local reality theory in the reach of current experimental technology.  相似文献   

12.
In this paper, we will explore the essence of the phenomenon that state with less entanglement may generate greater Bell violation in the two-qubit Bell tests with CH-type inequalities, i.e., more nonlocality with less entanglement. We will show that this interesting but counterintuitive phenomenon is caused by the rotational asymmetry of the nonmaximally entangled state in the measurement plane. This asymmetry allows the both-side detection probabilities and the one-side detection probabilities obtain their maximal values with nonmaximally entangled state. But the maximal Bell violation may not always happen on nonmaximally entangled state, because these probabilities will compete with each other, and the Bell violation behaves differently for various CH-type inequalities.  相似文献   

13.
One of the most significant and well-known properties of entangled states is that they may lead to violations of Bell inequalities and are thus inconsistent with any local-realistic theory. However, there are entangled states that cannot violate any Bell inequality, and in general the precise relationship between entanglement and observable nonlocality is not well understood. We demonstrate that a violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality can be demonstrated in a certain kind of Bell experiment for all entangled states. Our proof of the result consists of two main steps. We first provide a simple characterization of the set of states that do not violate the CHSH inequality even after general local operations and classical communication. Second, we prove that for each entangled state sigma, there exists another state rho not violating the CHSH inequality, such that rhomultiply sign in circlesigma violates the CHSH inequality.  相似文献   

14.
Ming-Liang Hu 《Annals of Physics》2012,327(9):2332-2342
Dynamics of disentanglement as measured by the tripartite negativity and Bell nonlocality as measured by the extent of violation of the multipartite Bell-type inequalities are investigated in this work. It is shown definitively that for the initial three-qubit Greenberger–Horne–Zeilinger (GHZ) or W class state preparation, the Bell nonlocality suffers sudden death under the influence of thermal reservoirs. Moreover, all the Bell-nonlocal states are useful for nonclassical teleportation, while there are entangled states that do not violate any Bell-type inequalities, but still yield nonclassical teleportation fidelity.  相似文献   

15.
We derive two classes of multimode Bell inequalities under local realistic assumptions, which are violated only by the entangled states negative under partial transposition in accordance with the Peres conjecture. Remarkably, the failure of local realism can be manifested by exploiting wave and particle correlations of readily accessible continuous-variable states, with very large violation of inequalities insensitive to detector efficiency, which makes a strong case for a loophole-free test.  相似文献   

16.
宋伟 《中国物理快报》2007,24(2):336-339
We propose a protocol for teleportation of arbitrary mixture of diagonal Bell states, it is shown that the channel can be constructed with either pure maximally entangled states or mixed bound entangled states. We also present protocols to realize the controlled teleportation of mixture of diagonal Bell states via multi-particle mixed states. Our results show that bound entangled states are also important and useful resources in quantum communication tasks.  相似文献   

17.
Quantum error-correcting codes can protect multipartite quantum states from errors on some limited number of their subsystems (usually qubits). We construct a family of Bell inequalities which inherit this property from the underlying code and exhibit the violation of local realism, without any quantum information processing (except for the creation of an entangled state). This family shows no reduction in the size of the violation of local realism for arbitrary errors on a limited number of qubits. Our minimal construction requires preparing an 11-qubit entangled state.  相似文献   

18.
We report the first experimental violation of Bell's inequality in the spatial domain using the Einstein-Podolsky-Rosen state. Two-photon states generated via optical spontaneous parametric down-conversion are shown to be entangled in the parity of their one-dimensional transverse spatial profile. Superpositions of Bell states are prepared by manipulation of the optical pump's transverse spatial parity-a classical parameter. The Bell-operator measurements are made possible by devising simple optical arrangements that perform rotations in the one-dimensional spatial-parity space of each photon of an entangled pair and projective measurements onto a basis of even-odd functions. A Bell-operator value of 2.389+/-0.016 is recorded, a violation of the inequality by more than 24 standard deviations.  相似文献   

19.
We propose a feasible optical setup allowing for a loophole-free Bell test with efficient homodyne detection. A non-Gaussian entangled state is generated from a two-mode squeezed vacuum by subtracting a single photon from each mode, using beam splitters and standard low-efficiency single-photon detectors. A Bell violation exceeding 1% is achievable with 6 dB squeezed light and a homodyne efficiency around 95%. A detailed feasibility analysis, based upon the recent experimental generation of single-mode non-Gaussian states, suggests that this method opens a promising avenue towards a complete experimental Bell test.  相似文献   

20.
We present an option of the experiment with a correlated pair of particles in the entangled state, which provides the effect of a change in the polarization for entangled photons, and demonstrate the reality of all different superposition states and the corresponding vector of the quantum system state; also we analyze possible consequences of this fact. We propose a quantum realism paradigm within the relational paradigm instead of the local realism concept disproved by the experiments on verifying the Bell inequalities. We analyze the results of experimental research of the Leggett inequality violation with respect to the verification of the adequacy of different kinds of nonlocal hidden variable theories and suggest a new way of their evaluation based on the study of the photon cross-correlation suppression after a beam splitter and preparation of quantum squeezed states. We show that the interpretation based on the nonlocal hidden variable theory is inconsistent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号