首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
张昕岳  周园  邓小宇  杜秀月 《化学通报》2007,70(12):929-935
LiBF4基电解质的热稳定性较好,对环境水分不太敏感,有希望发展成为被民用、军事、三航领域微型、储能及动力锂离子电池广泛采用的优秀电解质体系。本文综述了近期在改善LiBF4的电导率、拓宽应用温度范围、促进SEI膜的形成、提高其电解液电导率及与电极材料的相容性等方面所取得的进展,并对其未来发展方向作了展望。  相似文献   

2.
锂离子电池有机电解液材料研究进展   总被引:4,自引:0,他引:4  
综述了锂离子电池有机电解液材料的研究现状。锂离子电池有机电解液主要由电解质锂盐、有机溶剂和添加剂三个部分组成,新型电解质锂盐的研究开发可分为三个方面:(1)LiTFSI及其类似物;(2)络合硼酸锂化合物;(3)络合磷酸锂化合物。有机溶剂的研究工作主要集中在新型有机溶剂的开发上。最重要的添加剂主要有三类:(1)主要用以改善碳负极SEI膜性能的添加剂;(2)过充电保护添加剂;(3)配体添加剂。  相似文献   

3.
采用两步加热Polyol法制备了纳米LiMnPO4正极材料,详细研究了第一加热平台温度T1(T1=100,110,120,130,140,150°C)对样品物理性质及电化学性能的影响.通过X射线衍射(XRD)、扫描电镜(SEM)及比表面积测试(BET)对样品的晶体结构与微观形貌进行了表征.结果表明,在不同温度T1下得到的样品均为片状结构;T1=100-120°C时合成的样品含有杂相,且比表面积小于15 m2?g-1;在T1=130°C时,得到纯相LiMnPO4样品,且比表面积增至46.3 m2?g-1;随着T1的进一步升高,样品比表面积稍有下降,维持在35-37 m2?g-1之间.纳米LiMnPO4的电化学性能变化趋势与比表面积基本一致,T1=130°C时合成的样品呈现最优的电化学性能,在0.1C倍率下放电容量达到129 mAh?g-1,在5C倍率时达到81 mAh?g-1,这表明LiMnPO4的比表面积是决定其电化学性能的关键因素之一.  相似文献   

4.
Cu~(2+)掺杂LiFePO_4的制备及其电化学性能   总被引:1,自引:0,他引:1  
应用固相反应法合成LiFePO4及掺杂Cu2+的LiFePO4,以XRD、XPS表征样品的结构及Fe存在的价态.发现掺杂少量的Cu2+未能改变LiFePO4材料的结构特征以及Fe2+的化学状态,但是Cu2+的掺杂使得LiFePO4材料的晶胞体积变小.充放电测试结果表明少量Cu2+的掺杂能显著地提高LiFePO4材料的大倍率输出能力,LiCu0.02Fe0.98PO4,其1C放电容量可达130 mAh/g以上,较掺杂前提高了20%左右.  相似文献   

5.
随着锂离子电池对高安全性、高容量、高功率等性能的技术需求,新型功能电解质材料的研究开发成为锂离子电池新材料领域研发工作的重点.本文对面向锂离子电池应用的功能电解质材料锂盐和添加剂的最新研究进展作了较为全面的阐述,其中重点介绍了本研究团队近年来在面向改善锂离子电池安全性能、提高其温度适应性、增强电解质与电极材料相容特性等...  相似文献   

6.
7.
采用微波法合成锂离子电池正极材料LiFePO4,并通过X射线衍射(XRD)、电子扫描电镜(SEM)和恒电流充放电实验,研究了在一定微波功率下合成出的材料的性能。结果表明,当含碳量在5%时,采用0.1C进行充放电,材料比容量可达126mAh/g,循环50次后,比容量仅下降10%,循环稳定性好。  相似文献   

8.
采用溶胶-凝胶法合成了高电位正极材料LiCoPO4,并通过X射线衍射(XRD)、扫描电镜(SEM)以及充放电测试考察了不同烧结条件下产物的晶体结构、微观形貌以及电化学性能.实验结果表明:在650°C下烧结12h所制备的样品为单一橄榄石型结构的LiCoPO4,产物颗粒细小(0.2-0.4μm)且分布均匀,同时具有最佳的电化学性能,其在1C倍率下的放电比容量可达到122.7mAh.g-1.此外,产物在充放电过程中均呈现两个电压平台,且随着放电倍率的增加,两个电压平台之间的区分逐渐明显,分析认为,这与充放电过程中锂离子的两步脱嵌行为有关.  相似文献   

9.
惠乐  唐子龙  罗绍华  张中太 《化学进展》2007,19(10):1460-1467
本文介绍了溶胶凝胶法制备LiFePO4正极材料的基本原理及近几年这一领域的研究进展。对碳包覆活性物质、掺杂和多形态纳米化制备技术三种改性方法以及它们对LiFePO4正极材料性能的提高进行了总结。取得的成效主要有,容量得到提高、颗粒尺寸和碳含量有所减小,热处理过程所需时间大大缩短。文中进一步指出目前存在的若干问题,包括对制备过程的深入认识,产品成本以及环境污染。最后对其商业化的可能性进行了讨论。  相似文献   

10.
纳米级LiFePO_4材料的水热模板法合成及其性能研究   总被引:1,自引:0,他引:1  
采用水热模板法合成纳米级LiFePO4材料,改变水热反应中表面活性剂(十六烷基三甲基溴化铵)的比例控制样品颗粒生成的大小.SEM测试表明,合成的LiFePO4晶粒尺寸与表面活性剂的配比密切相关,范围在几十到几百nm之间.充放电试验表明,合成的纳米级LiFePO4材料电极具有优良的电化学性能,其0.1C放电最高比容量可达150 mAh/g,而1C和2C放电比容量也分别有140 mAh/g和126 mAh/g.  相似文献   

11.
锂离子电池电解质盐LiBF4的制备新方法及表征   总被引:3,自引:0,他引:3  
详细介绍了一种锂离子电池电解质盐LiBF4的全新制备方法乙腈溶剂法。制备过程采用氟硼酸钠加热分解产生BF3,BF3和LiF在CH3CN溶剂中反应,经过滤冷却结晶得到产物。其中中间产物BF3的制备过程采用GC-MS-SIM法监测,确定条件为氟硼酸钠在500℃下加热3h。粗品LiBF4经有机溶剂提纯后,通过红外和XRD检测手段定性,用原子吸收和离子色谱检测手段定量,证明产物LiBF4杂质含量少,并通过热分析证实其热稳定性优于LiPF6,整套实验方法优势明显。  相似文献   

12.
The ionic liquid [BMIm]BF4 doped with LiBF4 was found to efficiently catalyze the three‐component reaction between isocyanides, acetylenic esters and enols or phenols at room temperature, leading to rapid synthesis of 2‐aminopyran‐annulated systems in fairly high yields. Efficiency of this catalysis and its benefits in terms of improved yields and reaction times could be ascribed to involvement of relatively stable organolithium intermediates which make the reaction more feasible. The ionic solution tolerates a significant amount of dissolved LiBF4, while remaining fluid at room temperature to serve as solvent for the organic substrates. It retains its initial integrity after use and recovery, as it could be recycled several times without appreciable catalytic decrements. The catalytic activity of the ionic composite is completely lost in the absence of LiBF4. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The dehydration of two 5,5-disubstituted 4-hydroxy-4-methyl-3-phenylaminooxazolidin-2-ones into the corresponding 4-methylene-3-phenylaminooxazolidin-2-ones has been carried out. The structure of the products was confirmed by X-ray diffraction analysis.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1512–1517, October, 2004.  相似文献   

14.
camoo4薄膜;恒电位;阳极氧化; 制备;表征  相似文献   

15.
采用共沉淀法合成Fe3O4纳米粒子, 将含有硅氧烷基的离子型改性剂二甲基十八烷基氯化铵与Fe3O4纳米粒子进行接枝反应, 再用脂肪醇聚氧乙烯醚磺酸盐的长链阴离子交换Cl-, 在Fe3O4纳米粒子表面生成具有阴、 阳离子双电层结构的表面处理层, 得到无溶剂Fe3O4纳米流体. 研究结果表明, 在Fe3O4纳米粒子表面成功接枝了有机物长链, 改性的Fe3O4纳米粒子呈单分散分布, 其损耗剪切模量G″明显大于储能剪切模量G', 具有明显的流体行为, 在室温下即可流动.  相似文献   

16.
Since the conceptoffunctionally graded m aterials(FG M)is proposed[1,2],m uch attention has been paid toFG M studies.Generally,FG M s were designed with thegradientdistribution ofcom position and structure,andthe graded structure of FG M is achieved by acom position gradient from one side of m aterials to theother,resulting in gradientproperties.Itis well鄄knownthat properties of nanom eter鄄sized m aterials stronglydepend on their sizes.Such size effect offers a newconcept for the design…  相似文献   

17.
锂离子电池正极材料livpo4f的制备及性能   总被引:1,自引:0,他引:1  
锂离子电池;正极材料;livpo4f;碳热还原法  相似文献   

18.
A procedure for measurement of the heat of zeolite dehydration by scanning heating has been designed. Simultaneous data on heat flow (DSC) and mass loss (TG) are required for evaluation. The heating rate depends on the experimental conditions (point-spread function, sample mass, crucible design, and calorimetric reproducibility). Dehydration measurements have three advantages as compared with the sorption procedure: i) one can investigate samples with irreversible dehydration; ii) no approximation model is needed for calculation of the partial molar heat of dehydration; and iii) the procedure is not labor-consuming.The procedure was tested on the natural zeolites heulandite, chabazite and mordenite. The results are close to those measured by the sorption procedure. The partial molar heat of dehydration was found to depend on the water content. It increases from 50 to 87 J mol–1 K–1 for heulandite, from 53 to 81 J mol–1 K–1 for chabazite, and from 51 to 71 J mol–1 K–1 for mordenite.The approximation of the heat of sorption by linear regression was found to be wrong. Detection of a phase transitioN after this approximation has no meaning.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号