首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We discuss how to construct a direct and experientially natural path to entropy as a extensive quantity of a macroscopic theory of thermal systems and processes. The scientific aspects of this approach are based upon continuum thermodynamics. We ask what the roots of an experientially natural approach might be—to this end we investigate and describe in some detail (a) how humans experience and conceptualize an extensive thermal quantity (i.e., an amount of heat), and (b) how this concept evolved during the early development of the science of thermal phenomena (beginning with the Experimenters of the Accademia del Cimento and ending with Sadi Carnot). We show that a direct approach to entropy, as the extensive quantity of models of thermal systems and processes, is possible and how it can be applied to the teaching of thermodynamics for various audiences.  相似文献   

2.
A nonlinear generalization of the Landau-Lifshitz theory of hydrodynamic fluctuations for the simplest case in which only energy flux and temperature fluctuations are observed is used to derive the distribution function for a subsystem with a fluctuating temperature, which coincides with the Levy distribution taken to be one of the main results of the so-called Tsallis’s nonextensive statistics. It is demonstrated that the same distribution function is obtained from the principle of maximum of information entropy if the latter is provided by Renyi’s entropy, which is an extensive quantity. The obtained distribution function is to be used instead of the Gibbs distribution in constructing the thermodynamics of systems with significant temperature fluctuations.  相似文献   

3.
Quantum entanglement can cause the efficiency of a heat engine to be greater than the efficiency of the Carnot cycle. However, this does not mean a violation of the second law of thermodynamics, since there is no local equilibrium for pure quantum states, and, in the absence of local equilibrium, thermodynamics cannot be formulated correctly. Von Neumann entropy is not a thermodynamic quantity, although it can characterize the ordering of a system. In the case of the entanglement of the particles of the system with the environment, the concept of an isolated system should be refined. In any case, quantum correlations cannot lead to a violation of the second law of thermodynamics in any of its formulations. This article is devoted to a technical discussion of the expected results on the role of quantum entanglement in thermodynamics.  相似文献   

4.
董源  过增元 《物理学报》2012,61(3):30507-030507
熵产是非平衡热力学中的核心物理量,传统上表示为广义力(驱动力)与广义流的乘积.这种表达存在两方面缺陷:一是广义力与广义流的拆分具有任意性;更重要的是,以其计算热波传递时熵产可以为负值,从而违反热力学第二定律.本文基于热质理论分析表明,传热过程的熵产实质上是由热质流体的热质能耗散引起的,所以熵产中的力不是驱动力而是阻力,并且具有力的量纲.由此提出的熵产修正表达式,不仅在计算热波传递过程中熵产恒为正值,与扩展不可逆热力学中的熵产表达式一致,而且不存在力和流拆分的任意性.  相似文献   

5.
Nonequilibrium thermodynamics is formulated by combining the nonlinear Fokker-Planck equation with the so-called Gibbs entropy postulate. The entropy production thus derived consists of two parts: one is of the same form as the usual entropy production and the other is the fluctuating part attendant on it. The evolution criterion can easily be verified in the stochastic framework. For illustration the system governed by the linear Fokker-Planck equation is in detail discussed.  相似文献   

6.
The second law of thermodynamics has been proven by many facts in classical world. Is there any new property of it in quantum world? In this paper, we calculate the change of entropy in T.D. Kieu's model for quantum heat engine (QHE) and prove the broad validity of the second law of thermodynamics. It is shown that the entropy of the quantum heat engine neither decreases in a whole cycle, nor decreases in either stage of the cycle. The second law of thermodynamics still holds in this QHE model. Moreover, although the modified quantum heat engine is capable of extracting more work, its efficiency does not improve at all. It is neither beyond the efficiency of T.D. Kieu's initial model, nor greater than the reversible Carnot efficiency.  相似文献   

7.
The expression for the entropy flux is analysed from the point of view of irreversible thermodynamics. In connection with this problem the evolution equations for the heat flux and for the electric current density including nonlocal terms are derived and discussed. The relation for the entropy flux is compared with that obtained by the statistical nonequilibrium thermodynamics on the basis founded on a generalized Gibbs' ensemble method for nonequilibrium systems.  相似文献   

8.
In this paper we consider Myers-Perry black holes and study thermodynamics and statistics under logarithmic correction of the entropy. We calculate effect of logarithmic correction of thermodynamics quantities such as entropy. We study thermodynamics stability of the model by using the specific heat. We claim that the correction term removes some instabilities and matches statistical entropy with BH entropy.  相似文献   

9.
We calculate the linear response production of relevant entropy as defined recently by Balian. This quantity is — in contrast to the production of entropy defined in thermodynamics of irreversible processes — not determined by the linear transport coefficients alone but depends also on the susceptibilities with respect to the relevant observables. However, for systems satisfying a generalized ergodicity criterion the two expressions for the entropy production coincide.  相似文献   

10.
The problem of heat slip flow along solid walls is investigated within the framework of modern thermodynamics. The underlying idea is to elevate the heat flux at the boundary to the status of independent variable. General boundary conditions are obtained from the constraint imposed by the second law of thermodynamics expressing that the rate of entropy production is non-negative. In parallel, evolution equations for the heat flux inside the bulk of the system are also formulated.  相似文献   

11.
We employ the covariant version of a systematic framework of nonequilibrium thermodynamics to clarify the role of entropy in the classical theory of gravitation. An expression for the global entropy is identified naturally from the covariant formulation, and a dual role of the Einstein equation as a fundamental evolution equation and as a thermodynamic equation of state follows immediately. The covariant time integral of the entropy is a more fundamental quantity than the entropy itself. In the absence of matter, the gravitational entropy alone cannot generate any irreversible processes. Some implications for the structure of a quantum theory of gravity are discussed.  相似文献   

12.
Quantum Brownian motion, described by the Caldeira–Leggett model, brings insights to the understanding of phenomena and essence of quantum thermodynamics, especially the quantum work and heat associated with their classical counterparts. By employing the phase-space formulation approach, we study the heat distribution of a relaxation process in the quantum Brownian motion model. The analytical result of the characteristic function of heat is obtained at any relaxation time with an arbitrary friction coefficient. By taking the classical limit, such a result approaches the heat distribution of the classical Brownian motion described by the Langevin equation, indicating the quantum–classical correspondence principle for heat distribution. We also demonstrate that the fluctuating heat at any relaxation time satisfies the exchange fluctuation theorem of heat and its long-time limit reflects the complete thermalization of the system. Our research study justifies the definition of the quantum fluctuating heat via two-point measurements.  相似文献   

13.
在热力学中,功率和效率是衡量热机性能的两个主要参数.根据经典热力学,可逆热机效率的上限是卡诺效率,但相应的功率为零.这是因为卡诺效率的实现依赖于时间无穷长的准静态假设.因此,如何根据实际需求,在保证热机功率前提下提高热机效率成为热力学一个重要的科学挑战问题.在20世纪上半叶应运而生的有限时间热力学,今天得到了蓬勃发展,...  相似文献   

14.
D.P. Sheehan  D.H.E. Gross   《Physica A》2006,370(2):461-482
The thermodynamic limit and extensivity are central concepts in thermodynamics. In this paper, these are critically examined in light of systems for which they appear inadequate. It is found that their limitations lead to counterintuitive thermodynamic results involving heat flow, phase separations, thermostatistics of gravitating systems and the conversion efficiency of heat into work. Ultimately, these limitations are shown to bear on the utility of entropy and the universality of the second law of thermodynamics.  相似文献   

15.
Among various possible routes to extend entropy and thermodynamics to nonequilibrium steady states (NESS), we take the one which is guided by operational thermodynamics and the Clausius relation. In our previous study, we derived the extended Clausius relation for NESS, where the heat in the original relation is replaced by its “renormalized” counterpart called the excess heat, and the Gibbs-Shannon expression for the entropy by a new symmetrized Gibbs-Shannon-like expression. Here we concentrate on Markov processes describing heat conducting systems, and develop a new method for deriving thermodynamic relations. We first present a new simpler derivation of the extended Clausius relation, and clarify its close relation with the linear response theory. We then derive a new improved extended Clausius relation with a “nonlinear nonequilibrium” contribution which is written as a correlation between work and heat. We argue that the “nonlinear nonequilibrium” contribution is unavoidable, and is determined uniquely once we accept the (very natural) definition of the excess heat. Moreover it turns out that to operationally determine the difference in the nonequilibrium entropy to the second order in the temperature difference, one may only use the previous Clausius relation without a nonlinear term or must use the new relation, depending on the operation (i.e., the path in the parameter space). This peculiar “twist” may be a clue to a better understanding of thermodynamics and statistical mechanics of NESS.  相似文献   

16.
In this paper we consider Kerr-Gödel black hole and study thermodynamics and statistics. We analyze some important quantities such as free energy, specific heat, and partition function numerically. We compare thermodynamics entropy with statistics entropy and find agreement between them.  相似文献   

17.
It is known that the entropy for a singular spacetime metric can be calculated in the framework of classical field theories by applying Noether's theorem to stationary solutions of Einstein's field equations, integrating a suitable form on a trapping surface for the singularity. When the Kerr solution is considered, two different horizons appear. The physical entropy for the system is well known to be related to the outer horizon. We investigate here which is the meaning of the entropy calculated (via first principle of black hole thermodynamics) on the inner horizon. We show that this entropy, which was earlier interpreted as a sort of "spin entropy" of the black hole, admits in fact an interpretation as a quantity associated to a conserved charge which is related to the rotational degrees of freedom of the system.  相似文献   

18.
The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.  相似文献   

19.
Based on the ideas of adiabatic invariant quantity, we attempt to quantize the entropy of a charged black hole in de Sitter spacetime in two different coordinates. The entropy spectrum is obtained by imposing Bohr-Sommerfeld quantization rule and the laws of black hole thermodynamics to the modified adiabatic covariant action of the charged black hole. The result shows that the spacing of entropy spectrum is equidistant, and the corresponding horizon area quantum is identical to Bekenstein’s result. Interestingly, in contrast to the quasinormal mode analysis, we note that there is no need to impose the small charge limit for the obtained entropy spectrum of the charged black hole. We also note that the modified adiabatic covariant action gives the same value for the black hole entropy spectrum in different coordinate frames. This is a physically desired result since the entropy spectrum should be invariant under the coordinate transformations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号