首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photoinitiation abilities of three 1,2-diketones [i.e., acenaphthenequinone ( ANPQ ), aceanthrenequinone ( AATQ ), and 9,10-phenanthrenequinone ( PANQ )]-based photoinitiating systems [PISs, with additives such as iodonium salt, N-vinylcarbazole (NVK), tertiary amine, and phenacyl bromide (R-Br)] for cationic photopolymerization and free-radical photopolymerization under the irradiation of ultraviolet (UV; 392 nm) or blue (455 nm) light-emitting diode (LED) bulb are investigated. All 1,2-diketones studied exhibit ground state absorption that match with the emission spectra of UV (392 nm) or blue LED (455 nm) better than that of the well-known blue-light-sensitive photoinitiator camphorquinone (CQ). In particular, AATQ /iodonium salt/NVK can show high photoinitiating ability (with epoxide conversion yield >70%) under the UV light irradiation due to the effect of NVK. In addition, 1,2-diketone/iodonium salt (and optional NVK) systems are capable of initiating free-radical photopolymerization of methacrylates, with conversions of 50–58%. Furthermore, some 1,2-diketone/tertiary amine (and optional R-Br) combinations are found to demonstrate high efficiency to initiate free-radical photopolymerization, and 71% of methacrylate conversion can be achieved with PANQ /tertiary amine/R-Br PIS. Some 1,2-ketone-based PISs can even exhibit higher efficiency than the CQ-based systems. The photochemical mechanism of the radical generation from the 1,2-diketone-based PISs is investigated and found to be consistent with the related photopolymerization efficiency. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 792–802  相似文献   

2.
The purposes of this paper are moving toward (a) the development of a new series of photoinitiators (PIs) which are based on the keto-coumarin (KC) core, (b) the introduction of light-emitting diodes (LEDs) as inexpensive and safe sources of irradiation, (c) the study of the photochemical mechanisms through which the new PIs react using different techniques such as Fourier transform infrared, UV–visible or fluorescence spectroscopy, and so on, (d) the use of such compounds (presenting good reactivity and excellent photopolymerization initiating abilities) for two specific and high added value applications: 3D printing (@405 nm) and preparation of thick glass fiber photocomposites with excellent depth of cure, and finally (e) the comparison of the performance of these KC derivatives versus other synthesized coumarin derivatives. In this study, six well-designed KC derivatives ( KC-C , KC-D , KC-E , KC-F , KC-G , and KC-H ) are examined as high-performance visible-light PIs for the cationic polymerization of epoxides as well as the free-radical polymerization of acrylates upon irradiation with LED@405 nm. Excellent polymerization rates are obtained using two different approaches: a photo-oxidation process in combination with an iodonium (Iod) salt and a photo-reduction process when associated with an amine (N-phenylglycine or ethyl 4-(dimethylamino)benzoate). High final reactive conversions were obtained. A full picture of the involved photochemical mechanisms is provided.  相似文献   

3.
Only one naphthalic anhydride derivative has been reported as light sensitive photoinitiator, this prompted us to further explore the possibility to prepare a new family of photoinitiators based on this scaffold. Therefore, eight naphthalic Naphthalic anhydride derivatives (ANH1‐ANH8) have been prepared and combined with an iodonium salt (and optionally N‐vinylcarbazole) or an amine (and optionally 2,4,6‐tris(trichloromethyl)‐1,3,5‐triazine) to initiate the cationic polymerization of epoxides and the free radical polymerization of acrylates under different irradiation sources, that is, very soft halogen lamp (~ 12 mW cm?2), laser diode at 405 nm (~1.5 mW cm?2) or blue LED centered at 455 nm (80 mW cm?2). The ANH6 based photoinitiating systems are particularly efficient for the cationic and the radical photopolymerizations, and even better than that of the well‐known camphorquinone based systems. The photochemical mechanisms associated with the chemical structure/photopolymerization efficiency relationships are studied by steady state photolysis, fluorescence, cyclic voltammetry, laser flash photolysis, and electron spin resonance spin‐trapping techniques. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2860–2866  相似文献   

4.
Six iron complexes (FeCs) with various ligands have been designed and synthesized. In combination with additives (e.g., iodonium salt, N‐vinylcarbazole, amine, or chloro triazine), the FeC‐based systems are able to efficiently generate radicals, cations, and radical cations on a near UV or visible light‐emitting diode (LED) exposure. These systems are characterized by an unprecedented reactivity, that is, for very low content 0.02% FeC‐based systems is still highly efficient in photopolymerization contrary to the most famous reference systems (Bisacylphosphine oxide) illustrating the performance of the proposed catalytic approach. This work paves the way for polymerization in soft conditions (e.g., on LED irradiation). These FeC‐based systems exhibit photocatalytic properties, undergo the formation of radicals, radical cations, and cations and can operate through oxidation or/and reduction cycles. The photochemical mechanisms for the formation of the initiating species are studied using steady state photolysis, cyclic voltammetry, electron spin resonance spin trapping, and laser flash photolysis techniques. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 42–49  相似文献   

5.
The cations and radicals produced in aminothiazonaphthalic anhydride derivatives (ATNAs) combined with an iodonium salt, N‐vinylcarbazole, amine, or chloro triazine initiate the ring‐opening cationic polymerization of epoxides and the free radical polymerization of acrylates under LEDs at 405 or 455 nm. The photoinitiating ability of these novel photoinitiating systems is higher than that of the well‐known camphorquinone‐based systems. An example of the high reactivity of the new proposed photoinitiator is also provided in resins for 3D‐printing using a LED projector@405 nm. The chemical mechanisms are investigated by steady‐state photolysis, cyclic voltammetry, fluorescence, laser flash photolysis, and electron spin resonance spin‐trapping techniques. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1189–1196  相似文献   

6.
Three component photoinitiator systems containing N-substituted maleimide/ketocoumarin/tertiary amine have been used for the visible light photopolymerization of acrylate and thiol-ene monomers. Thin-film calorimetry studies were conducted. The polymerization exotherms of these systems with the blue (470 nm) and cyan (505 nm) LED light sources show that the multicomponent initiator package is an effective system for visible light polymerization of acrylate and thiol-ene monomers. Exotherms of a visible light initiator combination of camphorquinone/amine were recorded for comparison purposes.  相似文献   

7.
Photopolymerization of thick pigmented systems still remains challenging due to the light screening effect of the pigments. Here, we present a facile method based on upconversion nanoparticles (UCNPs)‐assisted photochemistry to achieve efficient photopolymerization and improved curing depth of pigmented systems. Under a 980‐nm laser irradiation, UCNPs are able to convert NIR light into UV and visible light to activate photoinitiators for the initiation of polymerization. Influencing factors on photopolymerization were systematically investigated. With optimal parameters, 25.5 mm of photopolymerization depth combined with 70% of maximal double bond conversion was obtained. The peak temperature of 120.4 °C during UCNPs‐assisted photopolymerization is comparable with or lower than that of some reported frontal photopolymerization applied to prepare functional composite polymeric materials. Both indentation hardness and reduced modulus of the photocured materials using UCNPs as internal lamps were higher than those of the reference cured under traditional blue LED light. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 994–1002  相似文献   

8.
Iodonium butyltriphenylborate salts (A I+ Ar′Ph3B R), (Bu) were found to be more efficient than iodonium tetraphenylborate salts (RPh) when used as photoinitiators for the polymerization of acrylates. Relative photodecomposition rates were also different. It was found from a study of the photoreaction of iodonium borate salts with a model monomer, methyl methacrylate, that iodonium butyltriphenylborate salts simultaneously produce a butyl radical from the borate anion and an aryl radical from the iodonium cation upon irradiation. Both radicals initiate polymerization. Iodonium tetraphenylborate salts were found to release an aryl radical, but only from the iodonium cation. Iodonium borate salts exhibit strong absorption below 300 nm with a tail absorption above 400 nm. Thus, iodonium butyltriphenyl borate salts are efficient photoinitiators even when used with visible light. When a photosensitizer such as 5,7-diiodo-3-butoxy-6-fluorone is employed, iodonium butyltriphenylborate salts are rendered much more efficient for visible light photopolymerization. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1667–1677, 1998  相似文献   

9.
Cyanines derived from heptamethines were investigated in combination with iodonium salts as initiators of the radical polymerization of tripropylene glycol diacrylate and epoxides derived from bisphenol‐A‐diglycidylether. A new near‐infrared (NIR) LED prototype emitting at 805 nm with an exposure intensity of 1.2 W cm?2 facilitated initiation of both radical and cationic polymerization using sensitizers derived from cyanines. This new light‐emitting device has brought new insight into the photochemistry of cyanines with the general structure 1 because a combination of photonic and thermal processes strongly influences reaction pathways. In particular, cationic cyanines comprising a cyclopentene moiety and diphenylamino group in the center initiated the cationic polymerization of epoxides. Selective oxidation of this unit explains why specifically these derivatives may function as initiators for cationic polymerization. In contrast, when the diphenylamino group was replaced by a barbital group at the meso‐position cationic polymerization of epoxides was not initiated.  相似文献   

10.
Isoquinolinone derivatives (IQ) have been synthesized and combined with different additives (an amine, 2,4,6‐tris(trichloromethyl)‐1,3,5‐triazine, an iodonium salt, or N‐vinylcarbazole) to produce reactive species (i.e. radicals and cations) being able to initiate the radical polymerization of acrylates, the cationic polymerization of epoxides, the thiol‐ene polymerization of trifunctional thiol/divinylether, and the synthesis of epoxide/acrylate interpenetrated polymer network IPN upon exposure to very soft polychromatic visible lights, blue laser diode or blue LED lights. Compared with the use of camphorquinone based systems, the novel combinations employed here ensures higher monomer conversions (~50–60% vs. ~15–35%) and better polymerization rates in radical polymerization. The chemical mechanisms are studied by steady‐state photolysis, fluorescence, cyclic voltammetry, laser flash photolysis, and electron spin resonance spin trapping techniques. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 567–575  相似文献   

11.
The novel photo-living radical polymerization was determined using 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) and bis(alkylphenyl)iodonium hexafluorophosphate (BAI) as the photo-acid generator. The polymerization of methyl methacrylate was performed using azobisisobutylonitrile as an initiator in the presence of MTEMPO and BAI at room temperature by irradiation with a high-pressure mercury lamp to produce poly(methyl methacrylate) with a comparatively narrow molecular weight distribution (M w/M n?=?1.3–1.7). The polymerization proceeded by a living mechanism based on the fact that the first-order time-conversion plots linearly increased. A linear increase in the plots of the molecular weight versus the conversion also supported the living nature of the polymerization. It was found that MTEMPO had an interaction with the propagation chain end to control the molecular weight, while BAI weakened the interaction of MTEMPO with the propagation chain end to reduce the molecular weight distribution and polymerization time.  相似文献   

12.
The photopolymerization of thin (monolayer and bilayer) Langmuir-Blodgett films of the lead salt of 2-docosynoic acid (CH3(CH2)18C≡CCOOH, DCA), with a triple bond near the carboxylic group, and the lead salt of 23-tetracosynoic acid (HC≡C(CH2)21COOH, TCA), with a triple bond far from the carboxyl group, has been investigated by IR spectroscopy. The principal distinctions between the polymerization kinetics of the DCA salt and that of the TCA salt are observed for bilayers. It is hypothesized that the perfection of the molecular packing in the bilayers is governed by the interlayer interaction of carboxyl groups, which exerts a stronger effect on the mutual orientation of the triple bonds in the DCA salt films as compared to the TCA salt films. A model is suggested for describing the kinetics of the two-dimensional photopolymerization of monoacetylenic compounds. A comparison between simulated and experimental data for the monolayer films demonstrates that the observed saturation of conversion (α) as a function of the UV exposure time (t) at the α ≈ 0.5?0.6 level can be attributed to the fact that the intermolecular distance lengthens with local film densification during polymerization. The effects of the substrate and the orientation of molecules in the layer on α (t) is reported.  相似文献   

13.
Four chalcones with large conjugation structures were designed and synthesized. Strong light absorption within the UV–vis range (λmax = 380–410 nm, εmax = 10,200–33,600 M−1 cm−1) matched the emission of light-emitting diodes within 385–450 nm. Compared with that of phenyl ring-containing chalcone, the bathochromic shift of the four chalcones was due to the enlarged conjugation structure and the intramolecular charge transfer effect. The reactive species produced from two- or three-component photoinitiating systems (PISs) based on chalcone-containing triphenyl amine and N-ethyl carbazole combined with an iodonium salt or/and an amine were highly efficient for versatile photopolymerizations (i.e., radical, cationic, blending, and thiol-ene polymerizations) upon soft exposure conditions (385–425 nm LEDs). UV–vis spectra, theoretical calculation, electrochemistry, real-time nuclear magnetic resonance spectra, and fluorescence quenching were investigated to determine the photochemical mechanism. Chalcone photoisomerization, which mainly occurred in anthracene-containing chalcone, weakened the initiation ability of the PISs. These chalcones have promising applications in photopolymerization.  相似文献   

14.
Phosphonic acids are known to be useful monomers in dental restorative materials because of their good potential to provide enhanced adhesion to hydroxyapatite and their high hydrolytic stability. In this study, the photopolymerization of phosphonic acid‐based monomer via the camphorquinone (CQ)/ethyl‐4‐(dimethylaminobenzoate) (EDAB) photoredox system is compared with a ternary system composed of iodonium hexafluorophosphate and CQ/EDAB. Photocalorimetry shows that the ternary system does not provide a significant acceleration of the polymerization with either acrylamide or methacrylate phosphonic acids. The complexation of the iodonium by the phosphonic moiety of the acidic monomers leads to a lowered iodonium reactivity and reduced polarizability of the medium and as a consequence limits the rate enhancement effect normally observed by phosphonic acids on the polymerization rate. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5046–5055  相似文献   

15.
16.
Polymerization of (meth)acrylate resins upon near-infrared (NIR) light remains a huge challenge. In this study, a new photoinduced method of polymerization of methacrylic monomers is presented, originally merging a photochemical and a photothermal pathway. A four-component system is proposed comprising an NIR dye combined with an iodonium salt, a phosphine, and a thermal initiator. A selection of dyes is suggested regarding electron transfer properties and/or light-to-heat conversion abilities. Several thermal initiators are studied: an alkoxyamine (BlocBuilder MA), an azo derivative, and a peroxide. For the first time, an NIR absorbing dye is used in photopolymerization using both its capacities of light-to-heat conversion and its ability to initiate an electron transfer reaction. Three wavelengths of irradiation will be presented here: 785, 940, and 1064 nm. These long wavelengths are challenging because the energy of photons is extremely low but these wavelengths offer significant advantages in term of light penetration (e.g., for the access to composites through photopolymerization processes). The different systems presented here exhibit high and rapid conversions of methacrylate functions. The underlying chemical mechanism will be fully depicted by real-time Fourier transform infrared spectroscopy and thermal imaging measurements. © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 300–308  相似文献   

17.
Several dimethylamino-substituted chalcone (i .e. dimethylaminobenzal acetophenone) (DBA) derivatives with intramolecular charge transfer transition character were used as visible light sensitizers for radical photopolymerization initiated by iodonium salt (DPIO). Initiating radical species is produced from DBA sensitized photolysis of DPIO through the single electron transfer, accompanying the bleaching of DBA, The activity of DBA decreases as a function of substituent attached to phenyl ring in the order: DBA-2 (OCH_3) >DBA-1(H)> DBA-3 (Cl). The kinetic study on photopolymerization of MMA was carried out in CH_3CN solution at 30 ℃by dilatometry. The polymerization rate was determined to be proportional to the concentration with exponents of 0.42, 0.25 and 0.86 for DPIO, DBA-1 and MMA, respectively.  相似文献   

18.
An efficient strategy for comprehensive utilization of the conjugated sulfonium salt photoacid generator (PAG), namely, 3‐{4‐[4‐(4‐N,N′‐diphenylamino)‐styryl]phenyl}phenyl dimethyl sulfonium hexafluoroantimonate, was developed through photoinitiated cationic photopolymerization (CP) of epoxides and vinyl ether upon exposure to near‐UV and visible light‐emitting diodes (LEDs; e.g., 365, 385, 405, and 425 nm). Photochemical mechanisms were investigated by UV–vis spectra, molecular orbital calculations, fluorescence, cyclic voltammetry, and electron spin resonance spin‐trapping analyses. Compared with commercial PAGs, the prepared conjugated sulfonium salt generated H+, which can be used as photoinitiator. Moreover, the fluorescent byproducts from photodecomposition can be used as photosensitizer of commercial iodonium salt in the photoinitiating systems of CP. These novel D‐π‐A type sulfonium‐based photoinitiating systems are efficient (epoxide conversion = 85–90% and vinyl conversion >90%; LEDs upon exposure to 365–425 nm) even in low‐concentration initiators (1%, w/w) and low curing light intensities (10–40 mW cm?2). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2722–2730  相似文献   

19.
N‐vinylcarbazole (NVK) can act simultaneously as a photoin itiator, an addi tive, and a mono­mer (photoinaddimer) of photopolymerization upon exposure to the household ultraviolet (UV) light‐emitting diode (LED) bulb (emission wavelength centered at 392 nm). Even though the light absorption spectrum of NVK exhibits weak overlapping with the emission spectrum of the UV LED, the active species (i.e., radicals and cations) can be generated from the interaction between NVK and diphenyliodonium hexafluorophosphate (Iod) under irradiation of this LED device, which is investigated by steady state photolysis and electron spin resonance spin‐trapping methods. Interestingly, the generated radicals and cations from the NVK/Iod system demonstrate high efficiency to initiate the free radical photopolymerization of (meth)acrylates and the cationic photopolymerization of epoxide and divinyl ether under the UV LED irradiation, and the one‐step simultaneous catonic/radical photopolymerization of expoxide/acrylate blend can lead to the formation of tack free polyacrylate/polyether‐based interpenetrated polymer network film within 10 min even when the polymerization process is exposed to the atmosphere highlighting the high efficiency of the system to reduce the oxygen inhibition effect. More interestingly, NVK/Iod system can also initiate the photopolymerization of NVK under the UV LED irradiation to produce polyvinylcarbazole, and NVK acts as both a photoinitiator and a monomer in the system.

  相似文献   


20.
Three‐component systems, which contain a light‐absorbing species (typically a dye), an electron donor (typically an amine), and a third component (usually an iodonium salt), have emerged as efficient, visible‐light‐sensitive photoinitiators. Although three‐component systems have been consistently found to be faster and more efficient than their two‐component counterparts, these systems are not well understood and a number of distinct mechanisms have been reported in the literature. In this contribution, photodifferential scanning calorimetry and in situ, time‐resolved, laser‐induced, steady‐state fluorescence spectroscopy were used to study the initiation mechanism of the three‐component system methylene blue, N‐methyldiethanolamine and diphenyliodonium chloride. Kinetic studies based upon photodifferential scanning calorimetry reveal a significant increase in polymerization rate with increasing concentration of either the amine or the iodonium salt. However, the laser‐induced fluorescence experiments show that while increasing the amine concentration dramatically increases the rate of dye fluorescence decay, increasing the DPI concentration actually slows consumption of the dye. We concluded that the primary photochemical reaction involves electron transfer from the amine to the dye. We suggest that the iodonium salt reacts with the resulting dye‐based radical (which is active only for termination) to regenerate the original dye and simultaneously produce a phenyl radical (active in initiation) derived from the diphenyliodonium salt. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2057–2066, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号