首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036–1040, 1975).  相似文献   

2.
This paper investigates the vortex dynamics in the suction-side boundary layer on an aero-engine low pressure turbine blade at two different Reynolds numbers at which short and long laminar separation bubbles occur. Different vortical patterns are observed and investigated through large eddy simulation (LES). The results show that at the higher Reynolds number, streamwise streaks exist upstream of separation line. These streaks initiate spanwise undulation in the form of vortex tubes, which roll-up and shed from the shear layer due to the Kelvin–Helmholtz instability. The vortex tubes alternately pair together and eventually distort and break down to small-scale turbulence structures near the mean reattachment location and convect into a fully turbulent boundary layer. At the lower Reynolds number, streamwise streaks are strong and the separated flow is unable to reattach to the blade surface immediately after transition to turbulence. Therefore, bursting of short bubbles into long bubbles can occur, and vortex tubes have larger diameters and cover a part of the blade span. In this case vortex pairing does not occur and vortex shedding process is promoted mainly by flapping phenomenon. Moreover, the results of dynamic mode decomposition (DMD) analysis show a breathing motion as a source of unsteadiness in the separation location, which is accompanied by the flapping phenomenon.  相似文献   

3.
4.
“...an eerie type of chaos can lurk just behind a facade of order, and yet deep inside the chaos lurks an even eerier type of order.” Douglas Hofstadter Bypass transition to turbulence in boundary layers is examined using linear theory and direct numerical simulations (DNS). First, the penetration of low-frequency free-stream disturbances into the boundary layer is explained using a model problem with two time scales, namely the shear and wall-normal diffusion. The simple model provides a physical understanding of the phenomenon of shear sheltering. The second stage in bypass transition is the amplification of streaks. Streak detection and tracking algorithms were applied to examine the characteristics of the streak population inside the boundary layer, beneath free-stream turbulence. It is demonstrated that simple statistical averaging masks the wealth of streak amplitudes in transitional flows, and in particular the high-amplitude, relatively rare events that precede the onset of turbulence. The third stage of the transition process, namely the secondary instability of streaks, is examined using secondary instability analysis. It is demonstrated that two types of instability are possible: An outer instability arises near the edge of the boundary layer on the lifted, low-speed streaks. An inner instability also exists, and has the appearance of a near-wall wavepacket. The stability theory is robust, and can predict the particular streaks which are likely to undergo secondary instability and break down in transitional boundary layers beneath free-stream turbulence. Beyond the secondary instability, turbulent spots are tracked in DNS in order to examine their characteristics in the subsequent non-linear stages of transition. At every stage, we compare the findings from linear theory to the empirical observations from direct solutions of the Navier-Stokes equations. The complementarity between the theoretical predictions and the computational experiments is highlighted, and it leads to a detailed view of the mechanics of transition.  相似文献   

5.
Boundary layers that develop over a body in fluid flow are in most cases three-dimensional owing to the spin, yaw, or surface curvature of the body. Therefore, the study of three-dimensional (3D) boundary-layer transition is essential to work in practical aerodynamics. The present investigation is concerned with the problem of 3D boundary layers over a yawed body. A yawed cylinder model that represents the leading edge portion of a swept wing and the mechanism of crossflow instability are investigated in detail using hot-wire velocimetry and a flow visualization technique. As a result, traveling disturbances having frequencies f1 and f2, which differ by about one order of magnitude, are detected in the transition region. The phase velocities and directions of travel of those disturbances are measured. Results for the low-frequency disturbance f1 show qualitative coincidence with results numerically predicted for a crossflow unsteady disturbance. Nameley, F1 travels nearly spanwise to the yawed cylinder and very close to the cylinder wall. The results for the high-frequency disturbance f2 good agreement with the existing experimental results. The 2 disturbance is found to be the high-frequency inflectional secondary instability that appears in 3D boundary layer transition in general. A two-stage transition process, where stationary crossflow vortices appear as the primary instability and a traveling inflectional disturbance is generated as a secondary instability, was observed. Secondary instability seems to play a major role in turbulent transition.  相似文献   

6.
A numerical investigation is carried out to study the transition of a subsonic boundary layer on a flat plate with roughness elements distributed over the entire surface. Post-transition, the effect of surface roughness on a spatially developing turbulent boundary layer (TBL) is explored. In the transitional regime, the onset of flow transition predicted by the current simulations is in agreement with the experimentally based correlations proposed in the literature. Transition mechanisms are shown to change significantly with the increasing roughness height. Roughness elements that are inside the boundary layer create an elevated shear layer and alternating high and low speed streaks near the wall. Secondary sinuous instabilities on the streaks destabilize the shear layer promoting transition to turbulence. For the roughness topology considered, it is observed that the instability wavelengths are governed by the streamwise and spanwise spacing between the roughness elements. In contrast, the roughness elements that are higher than the boundary layer create turbulent wakes in their lee. The scale of instability is much shorter and transition occurs due to the shedding from the obstacles. Post-transition, in the spatially developing TBL, the velocity defect profiles for both the smooth and rough walls collapsed when non dimensionalized in the outer units. However, when compared to the smooth wall, deviation in the Reynolds stresses are observable in the outer layer; the deviation being higher for the larger roughness elements.  相似文献   

7.
This paper reports on an application of large-eddy simulation (LES) to a spatially-developing round turbulent buoyant jet. The numerical method used is based on a low-Mach-number version of the governing equations for compressible flow which can account for density variations. The second-order centre-difference scheme is used for spatial discretization and an Adams–Bashforth scheme for temporal discretization. Comparisons are made between LES results, experimental measurements and plume theory for the forced plume under moderate Reynolds number and good agreement has been achieved. It is found that the plume spreading and the centerline maximum mean velocity strongly depend on the forcing conditions imposed on the inflow plane. The helical mode of instability leads to a larger spreading rate as compared to an axisymmetric mode. The enhanced entrainment is directly related to the strong turbulent momentum and energy transports between the plume and surrounding fluid induced by vortex dynamics. The entrainment ratio is about 0.09 and falls into the range of experimentally determined values. Budgets of the mean momentum and energy equations are analyzed. It is found that the radial turbulent transport nearly balances the streamwise convection and the buoyancy force in the axial momentum equation. Also, the radial turbulent stress is balanced by the streamwise convection in the energy equation. The energy-spectrum for the axial velocity fluctuations shows a −5/3 power law of the Kolmogorov decay, while the power spectrum for the temperature fluctuations shows both −5/3 and −3 power laws in the inertial-convective and inertial-diffusive ranges, respectively.  相似文献   

8.
Large Eddy Simulations (LES) of spatially developing turbulent mixing layers have been performed for flows of uniform density and Reynolds numbers of up to 50,000 based on the visual thickness of the layer and the velocity difference across it. On a fine LES grid, a validation simulation performed with a hyperbolic tangent inflow profile produces flow statistics that compare extremely well with reference Direct Numerical Simulation (DNS) data. An inflow profile derived from laminar Blasius profiles produces a flow that is significantly different to the reference DNS, particularly with respect to the initial development of the flow. When compared with experimental data, however, it is the boundary layer-type inflow simulation produces the better prediction of the flow statistics, including the mean transition location. It is found that the boundary layer inflow condition is more unstable than the hyperbolic tangent inlet profile. A suitably designed coarse LES grid produces good predictions of the mean transition location with boundary layer inflow conditions at a low computational cost. The results suggest that hyperbolic tangent functions may produce unreliable DNS data when used as the initial condition for studies of the transition in the mixing layer flow.  相似文献   

9.
A synthetic turbulence generation (STG) method for subsonic and supersonic flows at low and moderate Reynolds numbers to provide inflow distributions of zonal Reynolds-averaged Navier–Stokes (RANS) – large-eddy simulation (LES) methods is presented. The STG method splits the LES inflow region into three planes where a local velocity signal is decomposed from the turbulent flow properties of the upstream RANS solution. Based on the wall-normal position and the local flow Reynolds number, specific length and velocity scales with different vorticity content are imposed at the inlet plane of the boundary layer. The quality of the STG method for incompressible and compressible zero-pressure gradient boundary layers is shown by comparing the zonal RANS–LES data with pure LES, pure RANS, and direct numerical simulation (DNS) solutions. The distributions of the time and spanwise wall-shear stress, Reynolds stress distributions, and two point correlations of the zonal RANS–LES simulations are smooth in the transition region and in good agreement with the pure LES and reference DNS findings. The STG approach reduces the RANS-to-LES transition length to less than four boundary-layer thicknesses.  相似文献   

10.
Rising buoyant plumes from a point heat source in a naturally ventilated enclosure have been investigated using large-eddy simulation (LES). The aim of the work is to assess the performance and the accuracy of LES for modelling buoyancy-driven displacement ventilation of an enclosure and to shed more light on the transitional behaviour of the plume and the coherent structures involved. The Smagorinsky sub-grid scale model is used for the unresolved small-scale turbulence. The Rayleigh number, Ra is chosen to be in the range where spatial transition from laminar to turbulent flow takes place (Ra = 1.5 × 109). The plume properties (source strength and rate of spread) as well as the ventilation properties (stratification height and temperature of stratified layer) estimated using the theory of Linden et al. are found to agree reasonably well with the LES results. The variation of the plume width with height indicates a linear variation of the entrainment coefficient rather than a constant value used by Linden et al. for a fully turbulent thermal plume. Flow visualisation revealed the nature of the large-scale coherent structures involved in the transition to turbulence in the plume. The most excited modes observed in the velocity, pressure and temperature fields spectra correspond to Strouhal number in the range 0.3 ≤ St ≤ 0.55 which is in agreement with those observed by Zhou et al. for a turbulent forced plume. Excited modes less than thisvalue (St = 0.2) were observed and may be due to low-frequency motions felt throughout the flow.  相似文献   

11.
The flow in the wake of a finite-length cylinder has been studied experimentally both before and after the transition to turbulence. This instability occurs at Reynolds numbers around 180–190. One end of the cylinder was fixed to the bottom of the test-section of a wind tunnel, whilst the other terminated in the open flow (free end). For these boundary conditions four main frequency modes within the wake can be identified. These are a centre-cell mode at the Strouhal frequency, end-cell modes with a frequency below the Strouhal frequency, a mode exhibiting the difference frequency between the centre-cell and end-cell modes, and a low-frequency mode (appearing only after transition to turbulence). In this work the energy content of these four modes has been determined throughout the wake, both before and after transition to turbulence. For three of the modes, the energy content is the same before and after transition, whereas the low-frequency mode exhibits energy two to four orders of magnitude greater after transition than before. Hence it is clear that the additional turbulence energy appearing in the wake after transition is located predominantly in this low-frequency mode. The appearance of this low-frequency mode is characterized by the simultaneous appearance of a peak in the power spectra of the velocity fluctuations centred about zero frequency (but with finite width). Consequently, the appearance of this zero frequency peak can be taken as the signature of the onset of turbulence. By considering the downstream growth rates of this low-frequency mode, evidence is presented which suggests that transition to turbulence may occur as a result of wake transition in the downstream central plane of the cylinder.  相似文献   

12.
Characteristics of supersonic mixing and combustion with hydrogen injection upstream of a cavity flameholder are investigated numerically using hybrid RANS/LES (Reynolds-Averaged Navier–Stokes/Large-Eddy Simulation) method. Two types of inflow boundary layer are considered. One is a laminar-like boundary layer with inflow thickness of $\delta_{\inf } = 0.0$ and the other is a turbulent boundary layer with inflow thickness of $\delta_{\inf } = 2.5\,{\text{mm}}$ . The hybrid RANS/LES method acts as a DES (Detached Eddy Simulation) model for the laminar-like inflow condition and a wall-modeled LES for the turbulent inflow condition where the recycling/rescaling method is adopted. Although the turbulent inflow seems to have just minor influences on the supersonic cavity flow without fuel injection, its effects on the mixing and combustion processes are great. It is found that the unsteady turbulent structures in upstream incoming boundary layer interact with the injection jet, resulting in fluctuations of the upstream recirculation region and bow shock, and induce quick dispersion of the hydrogen fuel jet, which enhances the mixing as well as subsequent combustion.  相似文献   

13.
The need for better understanding of the low-frequency unsteadiness observed in shock wave/turbulent boundary layer interactions has been driving research in this area for several decades. We present here a large-eddy simulation investigation of the interaction between an impinging oblique shock and a Mach 2.3 turbulent boundary layer. Contrary to past large-eddy simulation investigations on shock/turbulent boundary layer interactions, we have used an inflow technique which does not introduce any energetically significant low frequencies into the domain, hence avoiding possible interference with the shock/boundary layer interaction system. The large-eddy simulation has been run for much longer times than previous computational studies making a Fourier analysis of the low frequency possible. The broadband and energetic low-frequency component found in the interaction is in excellent agreement with the experimental findings. Furthermore, a linear stability analysis of the mean flow was performed and a stationary unstable global mode was found. The long-run large-eddy simulation data were analyzed and a phase change in the wall pressure fluctuations was related to the global-mode structure, leading to a possible driving mechanism for the observed low-frequency motions.   相似文献   

14.
Particle Image Velocimetry (PIV) measurements have been analyzed in order to characterize the dynamics of coherent structures (eddies and streaks) within the suction side boundary layer of a low pressure turbine cascade perturbed by impinging wakes. To this end, the instantaneous flow fields at low Reynolds number and elevated free-stream turbulence intensity level (simulating the real condition of the blade row within the engine) were investigated in two orthogonal planes (a blade-to-blade and a wall-parallel plane). Proper Orthogonal Decomposition (POD) has been employed to filter the instantaneous flow maps allowing a better visualization of the structures involved in the transition process of the boundary layer. For the unsteady case properly selected POD modes have been also used to sort the instantaneous PIV images in the wake passage period. This procedure allows computing phase-averaged data and visualizing structures size and intensity in the different parts of the boundary layer during the different wake passage phases. The contributions to the whole shear stress due to the largest spanwise oriented scales at the leading and trailing boundaries of the wake-jet structures and those associated with streaky structures observed in the bulk of the wake are discussed. Instantaneous images in the wall-parallel plane are filtered with POD and they allow us to further highlight the occurrence of low and high speed traveling streaks (Klebanoff mode). The periodic advection along the suction side of the high turbulent content regions carried by the wakes anticipates both formation and sinuous instability of the streaks inside the boundary layer as compared with the steady case. The dynamics driving the breakdown of the streaks and the consequent formation of nuclei with high wall-normal vorticity have been found to be almost the same in the steady and the unsteady cases. Auto-correlation of the instantaneous images are also presented in order to highlight analogies and differences in the size and spacing of streaks in the two cases. These results are also compared with the available literature concerning simplified geometries (i.e flat plate) operating under steady inflow.  相似文献   

15.
朱德华  沈清  杨武兵 《力学学报》2021,53(3):752-760
返回舱高雷诺数再入过程中存在肩部高热流、底部阻力无法准确预测以及非定常振动等问题,解决此类问题的关键是分离和转捩等物理现象的准确识别.本文采用大涡模拟方法细致刻画了返回舱类钝体外形在高雷诺数再入过程中的分离和转捩等物理现象,获得了返回舱底部流动形态以及稳定性特征.从肩部剪切失稳、底部流动结构失稳、尾迹发展区以及远尾迹区...  相似文献   

16.
The transition of a separated shear layer over a flat plate, in the presence of periodic wakes and elevated free-stream turbulence (FST), is numerically investigated using Large Eddy Simulation (LES). The upper wall of the test section is inviscid and specifically contoured to impose a streamwise pressure distribution over the flat plate to simulate the suction surface of a low-pressure turbine (LPT) blade. Two different distributions representative of a ‘high-lift’ and an ‘ultra high-lift’ turbine blade are examined. Results obtained from the current LES compare favourably with the extensive experimental data previously obtained for these configurations. The LES results are then used to further investigate the flow physics involved in the transition process.In line with experimental experience, the benefit of wakes and FST obtained by suppressing the separation bubble, is more pronounced in ‘ultra high-lift’ design when compared to the ‘high-lift’ design. Stronger ‘Klebanoff streaks’ are formed in the presence of wakes when compared to the streaks due to FST alone. These streaks promoted much early transition. The weak Klebanoff streaks due to FST continued to trigger transition in between the wake passing cycles.The experimental inference regarding the origin of Klebanoff streaks at the leading edge has been confirmed by the current simulations. While the wake convects at local free-stream velocity, its impression in the boundary layer in the form of streaks convects much slowly. The ‘part-span’ Kelvin–Helmholtz structures, which were observed in the experiments when the wake passes over the separation bubble, are also captured. The non-phase averaged space-time plots manifest that reattachment is a localized process across the span unlike the impression of global reattachment portrayed by phase averaging.  相似文献   

17.
The unsteadiness of the flow over a surface-mounted rib involving passive scalar transport is studied using large-eddy simulation (LES) at a Reynolds number of 3000 (based on the rib height, \(h\), and the free-stream velocity, \(U_{0})\). The purpose of the present study is to gain further insight into the physical origin of the flow instability and its effect on passive scalar transport. Fourier spectral analysis of the velocity at different positions suggests that, in addition to the K-H instability in the shear layer (St ≈?0.42), two lower frequencies (St ≈?0.06 and 0.09) also exist. It is observed that the low-frequency instabilities accompany the shedding process of vortical structures. One low frequency, at \(\text {St}\approx 0.06\), is related to the pumping motion of the recirculation bubble, while the other, at \(\text {St}\approx 0.09\), is associated with the flapping mode of the shear layer. Through comparisons of velocity and temperature fields and the spectra of scalar fluctuations, it is found that the passive scalar is transported by the convection of vortical structures.  相似文献   

18.
Large eddy simulation (LES) is a viable and powerful tool to analyse unsteady three-dimensional turbulent flows. In this article, the method of LES is used to compute a plane turbulent supersonic boundary layer subjected to different pressure gradients. The pressure gradients are generated by allowing the flow to pass in the vicinity of an expansion–compression ramp (inclined backward-facing step with leeward-face angle of 25°) for an upstream Mach number of 2.9. The inflow boundary condition is the main problem for all turbulent wall-bounded flows. An approach to solve this problem is to extract instantaneous velocities, temperature and density data from an auxiliary simulation (inflow generator). To generate an appropriate realistic inflow condition to the inflow generator itself the rescaling technique for compressible flows is used. In this method, Morkovin's hypothesis, in which the total temperature fluctuations are neglected compared with the static temperature fluctuations, is applied to rescale and generate the temperature profile at inlet. This technique was successfully developed and applied by the present author for an LES of subsonic three-dimensional boundary layer of a smooth curved ramp. The present LES results are compared with the available experimental data as well as numerical data. The positive impact of the rescaling formulation of the temperature is proven by the convincing agreement of the obtained results with the experimental data compared with published numerical work and sheds light on the quality of the developed compressible inflow generator.  相似文献   

19.
Mode interaction is studied via direct numerical simulations of a Mach 4.5 boundary layer with discrete and continuous modes imposed at the inflow. An approximate decoupling procedure is developed to create separate vortical, acoustic and entropic continuous mode components. Oblique horizontal vorticity modes induce boundary layer disturbances that grow with downstream distance, similarly to their incompressible counterpart. One salient difference is that a low frequency vorticity mode, alone, is found to induce transition by spawning two-dimensional, unstable discrete modes. The discrete modes are non-linearly excited at high harmonics of the inlet perturbation. Adding a Mack second mode, in addition to the vorticity mode, causes even earlier transition, suggesting that, in supersonic flow, unstable discrete modes play a crucial role in breakdown of boundary-layer streaks.  相似文献   

20.
Previous studies on boundary layer transition at moderate levels of free stream turbulence (FST) have shown that the transition process can be promoted by the introduction of Tollmien-Schlichting (TS) waves. In the present work the interaction between localized boundary layer disturbances and controlled TS-waves is studied experimentally. The localized disturbances are generated either from a controlled free stream perturbation, or by means of suction or injection through a slot in the flat plate surface. Both methods result in boundary layer disturbances dominated by elongated streamwise streaks of high and low velocity in the streamwise component. A strong interaction is observed preferably for high frequency TS-waves, which are damped when generated separately, and the interaction starts as a local amplification of a wide band of low-frequency oblique waves. The later stages of the transition process can be identified as a non-linear interaction between the oblique structures, leading to regeneration of new and stronger streamwise streaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号