首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出了微波消解-电感耦合等离子体质谱法(ICP-MS)同时测定有机肥料中As、Cd、Co、Cr、Ni、Pb、Sb、Tl、V等9种有毒有害元素含量的方法。取0.10 g有机肥料样品于聚四氟乙烯微波消解罐中,以2.5 mL盐酸、7.5 mL硝酸和2.0 mL氢氟酸为混合酸进行微波消解。消解结束后,于140℃赶酸,然后加入1.0 mL 50%(体积分数)硝酸溶液,再用水定容至50 mL,摇匀,过滤,取滤液待测,在线加入混合内标溶液。结果表明:9种元素标准曲线的线性范围均为2~100μg·L-1,方法检出限(3s)为0.59~66.75μg·kg-1;按照标准加入法对典型有机肥料样品进行回收试验,9种元素测定值的相对标准偏差(n=7)为2.0%~3.5%,回收率为81.5%~112%。  相似文献   

2.
采用电感耦合等离子体发射光谱法(ICP-AES)直接快速测定蚕蛹、蝎子、海肠中20种元素含量,采用微波炉消解样品,试验了微波消解的条件.并对微波消解溶样和常规酸法溶样分别进行了测定和比较.方法的检出限为0.01~0.12 mg·L-1,相对标准偏差为1.4%~4.6%.  相似文献   

3.
建立了四酸微波消解-电感耦合等离子体原子发射光谱法(ICP-AES)测定土壤中6种重金属元素的方法。取0.10~0.20 g土壤样品用少量水润湿,加入6 mL硝酸、2 mL盐酸、1 mL氢氟酸和1 mL 30%(质量分数,下同)过氧化氢溶液,静置15 min使其充分反应,置于微波消解仪中按升温程序消解。消解液置于电热板上以140℃加热至溶液近干,用1%(体积分数)硝酸溶液溶解残渣并将其定容至25 mL,按优化的ICP-AES条件分析。所选的Pb、As、Ni、Cu、Zn、Cr的分析谱线分别为220.353,189.042,231.604,327.396,213.856,267.716 nm。结果显示:6种元素的质量浓度分别在1.00 mg·L~(-1)(Pb、As、Cu、Ni)内和2.00 mg·L~(-1)(Cr、Zn)内与其对应的光谱响应值呈线性关系,检出限(3s)为0.29~5.76μg·L~(-1);对标准样品进行6次重复测定,测定值的相对标准偏差为0.60%~2.6%,测定值与认定值基本一致。  相似文献   

4.
提出了用微波消解-电感耦合等离子体质谱法测定有机肥料中砷、镉、铅、铬、汞等5种元素的方法。有机肥料样品(0.200 0~0.500 0g)加入硝酸10mL和过氧化氢溶液1mL,按程序升温微波消解,将消解液蒸发至2mL,用硝酸(1+99)溶液定容至50mL。用电感耦合等离子体质谱法测定上述样液中的砷、镉、铅、铬、汞等元素。各元素的检出限(3.3s/k)为0.015~0.040mg·kg~(-1),测定值的相对标准偏差(n=6)均小于5.0%。按标准加入法进行回收试验,测得回收率在98.0%~101%之间。  相似文献   

5.
建立了微波消解-电感耦合等离子体质谱法(ICP-MS)同时测定铝土矿中锂、铬、铜、铁、钛、钾、钠、钙、镁、铅、锌等11种金属元素含量的方法。将铝土矿粉碎、研磨和干燥后,取0.1 g样品,加入3 mL硫酸、1 mL硝酸、2 mL氢氟酸和3 mL盐酸,按升温程序微波消解样品,加40 g·L~(-1)硼酸溶液10 mL,继续在120℃下消解10 min,使消解液变澄清。冷却后取出,180℃加热至近干,用1%(体积分数)硝酸溶液稀释,按照ICP-MS条件测定。通过用10 g·L~(-1)铝基体溶液配制混合标准溶液系列并加入内标元素Sc、Ge、Bi的方法来消除基体干扰,选择合适的待测元素同位素的方法来消除谱线重叠干扰。结果显示:11种元素的质量浓度均在一定范围内与其对应的响应值与内标元素响应值的比值呈线性关系,检出限(3s)为0.011~1.400 mg·kg~(-1)。对实际样品进行加标回收试验,测定值为0.13~72.21 mg·L~(-1),测定值的相对标准偏差(n=6)为0.69%~2.6%,回收率为94.0%~106%;此方法用于分析3种铝土矿成分分析标准物质GBW 07177、GBW 07179、GBW 07180,所得测定值均在认定值要求的范围内。  相似文献   

6.
用常规酸消解法或微波消解法消解样品,电感耦合等离子体原子发射光谱法(ICP-AES)测定了玩具包装物中的铬、镉、汞、铅的含量.对六价铬、镉、汞、铅的总含量超过100 mg·kg-1的样品,用共沉淀分离消解液中三价铬后,再用ICP-AES测定六价铬的含量,建立了玩具包装物中六价铬、镉、汞、铅的快速分析方法.方法的回收率为91.2%~103.5%,相对标准偏差(n=11)均小于3%.  相似文献   

7.
建立微波消解样品、电感耦合等离子体质谱(ICP-MS)法同时检测外科植入物用超高分子量聚乙烯(UHMWPE)中铝、钙、钛3种杂质元素的分析方法。取0.50 g样品,加入5 mL硝酸和1 mL过氧化氢,于180℃微波消解15 min,以钪(45Sc)为内标,用ICP-MS法同时测定外科植入物用UHMWPE中杂质元素铝、钙、钛的含量。该方法对铝、钙、钛元素的测定具有良好的线性关系,相关系数均不小于0.999 6,检出限为0.10~0.14 mg/kg,样品测定结果的相对标准偏差为1.2%~3.6%(n=7),样品加标回收率为97.3%~101.3%。该方法适用于测定UHMWPE中杂质元素含量。  相似文献   

8.
建立了超级微波消解-电感耦合等离子体质谱(ICP-MS)法测定多类型土壤基质中钒、铬、锰、钴、镍、铜、锌、砷、钼、锑、铊、铅和铀等13种元素含量的方法。采用超级微波消解法对样品进行前处理,比较了超级微波前处理与常规微波前处理消解效果,并优化了消解酸体系。在最优条件下,13种元素的方法检出限(LOD)为0.000 2~0.2mg/kg,方法定量限(LOQ)范围为0.001~0.6mg/kg。在0~500μg/L范围内线性回归系数(R~2)在0.999 6~1.000 0,各元素加标回收率在76.3%~126%,方法准确度可以满足样品多元素同时测定的需求,一次样品前处理可实现18个样品的同时测定,相较于常规前处理方法大幅减少酸使用的同时更加安全、高效、不易污染样品,可为土壤重金属污染监测工作提供可靠的分析方法支撑。  相似文献   

9.
膨润土样品用硝酸、盐酸、氢氟酸在超级微波消解仪中进行消解,消解完毕后加入高氯酸加热除去有机物、碳类。采用电感耦合等离子体原子发射光谱法测定样品溶液中钙、镁、磷、锰、铁、钛等6种元素的含量。6种元素的质量浓度在一定范围内与其对应的发射强度呈线性关系,方法的检出限(3s)为0.001~0.009mg·L-1。方法应用于膨润土样品的分析,测定值的相对标准偏差(n=11)为0.74%~2.7%。用标准加入法做方法的回收试验,测得回收率为96.0%~102%,方法测定值与X射线荧光光谱法测定结果相符。  相似文献   

10.
提出了用微波消解-电感耦合等离子体原子发射光谱法测定河流和湖泊沉积物中11种重金属元素(银、镉、钴、铬、铜、锰、镍、铅、锑、钒和锌)的方法。沉积物样品(0.100 0~0.500 0g)加入硝酸6mL,盐酸2mL,氢氟酸2mL,按程序升温微波消解,将消解液于130~140℃蒸发至近干,加水溶解残渣并定容至50mL。此溶液供电感耦合等离子体原子发射光谱法同时测定11种重金属元素含量,并选择了合适的分析谱线。光谱干扰运用背景扣除予以校准。测得各元素的检出限(3s)为0.20~2.00mg·kg~(-1)。以沉积物样品为基体,按标准加入法进行回收试验,测得回收率在81.6%~112%之间,相对标准偏差(n=6)均小于6.0%。按上述方法测定CRM(GBW 07360,GBW 07307a),测定值与认定值一致。  相似文献   

11.
建立了微波消解-电感耦合等离子体质谱法(ICP-MS)测定深海沉积物中稀土总量的方法。将深海沉积物湿样烘干、压碎,剔除杂质,过筛后再次烘干。称取0.20 g样品于微波消解罐中,加入5.0 mL硝酸和2.0 mL氢氟酸,在程序升温条件下进行微波消解,结束后加入3.0 mL高氯酸进行赶酸,再加入50%(体积分数)硝酸溶液加热溶解样品中的盐类。冷却后,用水定容至50 mL。分取5.0 mL,用2%(体积分数)硝酸溶液定容至50 mL,在线加入10μg·L~(-1)铟内标溶液,按照优化的ICP-MS工作条件测定稀土氧化物含量。结果显示:15种稀土氧化物的质量浓度在一定范围内和其与内标元素铟响应值的比值呈线性关系,相关系数均为0.999 9,检出限(3s)为0.006 2~0.060 0μg·g~(-1)。对3种深海沉积物样品进行精密度、加标回收及方法比对试验,结果显示:所得测定值的相对标准偏差(n=11)为1.1%~2.9%,回收率为96.0%~104%,方法和国家标准方法GB/T 17417.1-2010所得的测定值基本一致。  相似文献   

12.
采用微波消解样品,电感耦合等离子体原子发射光谱法(ICP-AES)测定了野菊花、菊花、蒲公英、枇杷叶和蝉蜕5种中草药中铜、锌、钴、锰4种微量金属元素的含量.在最佳仪器条件下,对野菊花样品平行测定6次,各元素的加标回收率在96.0%~106.5%之间,相对标准偏差(n=6)均小于2.0%.铜、锌、钴、锰4元素的检出限(3S/N)依次为0.011,0.018,0.001 1,0.024 mg·L-1.  相似文献   

13.
取硬金样品约0.1g,加入新配制的盐酸-硝酸(3+1)混合酸6mL,按消解程序进行微波消解。待消解结束后将溶液于80℃加热赶去氮氧化物,冷却至室温后用水定容至50mL,用电感耦合等离子体原子发射光谱法测定其中铅、砷、汞、镉的含量。各元素的质量浓度均在0.10~10.0mg·L~(-1)内与对应的发射强度呈线性关系,检出限(3s)为2.0~8.0mg·kg~(-1)。加标回收率为91.0%~103%。应用该方法分析了21批次3D硬金饰品,测定结果与电感耦合等离子体质谱法的一致,测定值的相对标准偏差(n=6)小于3.0%。  相似文献   

14.
稻米样品经硝酸微波消解后,采用电感耦合等离子体原子发射光谱法(ICP-AES)测定稻米中钼的含量.选择波长为202.03 nm的谱线作为测定钼的分析线.钼元素的质量浓度在10.0~80.0μg·L-1内与其对应的响应值呈线性关系,方法检出限(3s)为0.05 mg·kg-1.应用此法测定大米粉标准物质中钼元素的含量,测...  相似文献   

15.
为了解决国家标准方法不能同时测定钬铁合金样品中的稀土元素和其他元素的问题,提出了题示研究。取0.100 0 g钬铁合金样品至150 mL烧杯中,加入10 mL水、10 mL盐酸,于300℃加热至样品溶解完全,冷却后,用水定容至100 mL,采用电感耦合等离子体原子发射光谱法(ICP-AES)测定其中钆、铽、镝、铒、钇、镧、铈、镨、钕、钐、钙、镁、铝、锰、镍和钛等16种杂质元素的含量,并利用基体匹配法消除了合金材料中存在的大量钬和铁元素对待测元素的光谱干扰。结果表明,16种元素的质量浓度在一定范围内与对应的谱线强度呈线性关系,检出限(3s)为0.01~0.32μg·L-1。按照标准加入法进行回收试验,回收率为90.0%~115%,测定值的相对标准偏差(n=6)均小于7.0%。  相似文献   

16.
将烟用香精和料液样品0.3 g(精确至0.001 g)置于全自动石墨消解仪消解罐中,分3次加入消解液(共计10 mL硝酸、1 mL高氯酸),在170℃的最高消解温度下,样品消解完全.所得溶液用水定容至50 mL,采用电感耦合等离子体质谱法(ICP-MS)测定其中砷、铅、镉、铬、镍等元素的含量.以铟为内标,铬、镉、镍、铅、砷元素的测量同位素分别为^(52)Cr、^(111)Cd、^(60)Ni、^(208)Pb、^(75)As,使用动态反应池(DRC)模式消除了铬、砷元素的质谱干扰,铬、镉、镍、铅等元素的测定选择氦气碰撞模式,砷元素的测定选择氢气反应模式.结果表明,5种元素的质量浓度在一定范围内与各元素与内标计数值的比值呈线性关系,检出限(3s)为0.016~0.035 mg·kg^(-1).按标准加入法进行回收试验,各元素回收率为91.5%~111%,相对标准偏差(n=6)为0.28%~3.1%.方法用于10个烟用香精和料液样品的分析,铬、砷、镍的检出量分别为0.019~0.061 mg·kg^(-1),0.039~0.061 mg·kg^(-1)和0.022~0.031 mg·kg^(-1),镉和铅未检出.  相似文献   

17.
植物样品置于聚四氟乙烯罐中,加入硝酸及过氧化氢后在MARS 5微波消解仪中按设定程序加热消解.样品溶液经定容为一定体积并保持一致的稀硝酸酸度,直接进样进行电感耦合等离子体原子发射光谱法(ICP-AES)分析,在选定的优化分析条件下同时测定其9种元素(钾、钙、镁、磷、硼、锌、铜、铁及锰)的含量.包括样品消解在内,分析全过程只需3~4 h.用标准曲线法进行定量,所得各元素的标准曲线均有良好的线性关系.应用此方法分析了一种茶叶标准物质(GBW 07605),所得9种元素的测定结果与证书值相符,各元素测定值的相对标准偏差(n=5)在0.3%~4.7%之间.  相似文献   

18.
应用电感耦合等离子体原子发射光谱法(ICP-AES)测定了不同种类催干剂中9种金属元素,即钴、锰、铅、钙、锌、钒、锆、镧和铈。样品置于聚四氟乙烯溶样罐中加入浓硝酸及高氯酸,盖紧罐盖后按预设程序分两步进行微波加热,加压消解,所得溶液稀释至一定体积供ICP-AES分析。对上述元素的谱线中选择合适的谱线作分析线,达到了9元素的同时测定。同混合标准溶液制备各元素的工作曲线,其线性范围均在100.0 mg·L~(-1)以内。以一催干剂样品为基体,用标准加入法作回收试验,测得回收率在93.8%~109.9%之间,测定值的相对标准偏差(n=6)在0.11%~1.56%之间。不同来源的5个催干剂样品的分析结果表明所测得的金属元素的类别和含量显著差异。试验还证实所提出的方法具有操作快速、简单、方便,适合应用于日常分析工作。  相似文献   

19.
采用微波消解-电感耦合等离子发射光谱法(ICP-AES)测定了面粉中的滑石粉含量.采用氢氟酸、硝酸处理样品,使滑石粉中的镁转化成Mg2+,Mg含量在5~50 mg/L范围内与光谱强度线性相关,线性相关系数为0.9994.测定结果的相对标准偏差为3.18%~7.80%(n=6),回收率为91.2%~102.4%.  相似文献   

20.
为解决高纯石墨样品前处理中高温灰化耗时长(4~10 h)的问题,提出了题示方法。取高纯石墨样品0.300 0 g,置于50 mL聚丙烯样品管中,用15 mL 10%(体积分数)王水(体积比为3∶1的盐酸-硝酸混合液)超声提取20 min,提取时会有部分石墨漂浮于液面上,用注射器吸取样品管中部的提取液约3 mL,过0.45μm水系滤膜后收集在样品管中,在灰化温度为900℃、原子化温度为2 000℃等条件下采用石墨炉原子吸收光谱法进行测定。结果表明,超声提取缩短了样品处理时间(仅为20 min)。铅元素的质量浓度在5~50μg·L-1内与对应的吸光度呈线性关系,检出限(3s/k)为0.11 mg·kg-1。对同一样品分析7次,测定值的相对标准偏差为4.6%。按照标准加入法进行回收试验,回收率为91.0%~94.0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号