首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The thermal properties of a silicon oxide‐based low‐k film and a thermally oxidized silicon film were investigated using the 3‐omega and laser thermo‐reflectance (LTR) methods. Thermal conductivity and effusivity were successfully estimated by the 3‐omega and LTR methods, respectively. It was confirmed that the combination of thermal effusivity and conductivity can successfully provide the heat capacity and thermal diffusivity of the films. The thermal parameters thus obtained suggested that the lower thermal conductivity of the examined low‐k film comes mainly from the rather low level of thermal diffusivity. Based on an analysis of the X‐ray diffraction profiles of the films, it was found that the low thermal diffusivity of the low‐k film can be attributed to the discontinuity of the network structure of their clusters. The heat resistance at the interface between the film and Si substrate was also evaluated. We found that the low‐k film exhibited, interestingly, negative interfacial heat resistance, although interfacial heat resistance should have a positive value in general. In order to determine the origin of the negative interfacial heat resistance, the interface state of the films was analyzed in detail on the basis of X‐ray reflectivity (XRR) measurements. The XRR results showed clearly that a thin, high‐density layer was present at the interface of the low‐k films. This high‐density layer presumably promoted heat flow to the substrate, resulting in the apparent negative interfacial heat resistance. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Using materials with high thermal conductivity is a matter of great concern in the field of thermal management. In this study, we present our experimental results on two-dimensional thermal conductivity of carbon nanotube (CNT) films obtained by using an optical method based on Raman spectroscopy. We use four kinds of CNTs in film preparation to investigate the effect of CNT type on heat spreading performance of CNT films. This first comparative study using the optical method shows that the arc-discharge single-walled carbon nanotubes yield the best heat spreading film. We also show that the Raman method renders reasonable thermal conductivity value as long as the sample is a transparent film by testing CNT films with various transmittance. This study provides useful information on characterization of thermal conduction in transparent CNT films and could be an important step toward high-performance carbon-based heat spreading films.  相似文献   

3.
Characterization of thermal transport in nanoscale thin films with very low thermal conductivity (<1 W m?1 K?1) is challenging due to the difficulties in accurately measuring spatial variations in temperature field as well as the heat losses. In this paper, we present a new experimental technique involving freestanding nanofabricated specimens that are anchored at the ends, while the entire chip is heated by a macroscopic heater. The unique aspect of this technique is to remove uncertainty in measurement of convective heat transfer, which can be of the same magnitude as through the specimen in a low conductivity material. Spatial mapping of temperature field as well as the natural convective heat transfer coefficient allows us to calculate the thermal conductivity of the specimen using an energy balance modeling approach. The technique is demonstrated on thermally grown silicon oxide and low dielectric constant carbon-doped oxide films. The thermal conductivity of 400 nm silicon dioxide films was found to be 1.2 W m?1 K?1, and is in good agreement with the literature. Experimental results for 200 nm thin low dielectric constant oxide films demonstrate that the model is also capable of accurately determining the thermal conductivity for materials with values <1 W m?1 K?1.  相似文献   

4.
Scanning thermal microscopy (SThM) has been used for the visualization and characterization of an ultrathin plasma polymer film of perfluoro(methylcyclohexane) at a submicrometer level. The morphology, molecular dynamics, and lateral homogeneity of the ultrathin film have all been examined precisely with SThM. The growth of the plasma polymer film on a silicon wafer (Si‐wafer) has also been precisely determined using a new burning‐hole technique. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1392–1400, 2005  相似文献   

5.
An eddy current microscopy technique to evaluate the electrical conductivity of thin metallic films in a non‐contact manner is reported. A narrow track formed in an approximately 100 nm thick Au film was prepared, and a Co–Cr coated magnetic tip was driven to oscillate above the track both with and without current passing through the track. Despite the absence of current, the electromagnetic interaction between the tip and the stray magnetic field from the track gave rise to a phase delay in the probe. This was due to an eddy current being induced within part of the track. Moreover, measurements of the phase change in the probe oscillation for different metallic films with thicknesses of about 100 nm found this to be proportional to the electrical conductivity of the film. Finally, the electrical conductivity of an Al film was evaluated using the eddy current microscopy technique. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In this work, conductive atomic force microscopy is used to study the inhomogeneous surface electrical conductivity of Al‐doped ZnO thin films at a nanoscale dimension. To this end, Al‐doped ZnO films were deposited onto the soda lime glass substrates at substrate temperature (Ts) varying from 303 to 673 K in radio frequency magnetron sputtering. The obtained local surface electrical conductivity values are found to be influenced by their bulk electrical resistivity, surface topography and tip geometry. Further, the average (local) surface conductivity from the film surface is found to increase with increasing Ts from 303 to 623 K, beyond which they decrease until 673 K. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Thin films of poly(methylsilsesquioxane) (PMSSQ) are candidates for use as interdielectric layers in advanced semiconductor devices with multilayer structures. We prepared thin films of PMSSQ with thicknesses in the range 25.0-1151.0 nm by spin-casting its soluble precursor onto Si and GaAs substrates with native oxide layers and then drying and curing the films under a nitrogen atmosphere at temperatures in the range 250-400 degrees C. The out-of-plane thermal expansion coefficient alpha(perpendicular) of each film was measured over the temperature range 25-200 degrees C using spectroscopic ellipsometry and synchrotron X-ray reflectivity, while the in-plane thermal expansion coefficient alpha(parallel) of each film was determined over the temperature range 25-400 degrees C by residual stress analysis. PMSSQ films cured at higher temperatures exhibited reduced thermal expansion, which is attributed to the denser molecular packing and higher degree of cross-linking that arises at higher temperatures. Surprisingly however, all the PMSSQ films were found to exhibit very strong anisotropic thermal expansion; alpha(perpendicular) and alpha(parallel) of the films were in the ranges 140-329 ppm/ degrees C and 12-29 ppm/ degrees C respectively, depending on the curing temperature. This is the first time that cured PMSSQ thin films have been shown to exhibit anisotropic thermal expansion behavior. This anisotropic thermal expansion of the PMSSQ thin films might be due to the anisotropy of cross-link density in the films, which arises because of a combination of factors: the preferential orientation of methyl groups toward the upper film surface and the preferential network formation in the film plane that occurs during curing of the confined film. In addition, the film electron densities were determined using synchrotron X-ray reflectivity measurements and the film biaxial moduli were obtained using residual stress analysis.  相似文献   

8.
Shimosaka T  Izako M  Uchiyama K  Hobo T 《The Analyst》2003,128(6):562-565
We have developed a novel method for in situ and non-destructive surface analyses, or a total internal reflection with thermal lens spectroscopy (TIR-TLS), which has sufficient sensitivity to monitor phenomena in thin films, such as lipid bilayers. In this study, we applied TIR-TLS to microscopy for surface analyses, and we experimentally obtained its lateral resolution using the edge of a chromium film made by a photolithography technique. The obtained resolution was 20 microm, which was 60% of the diameter of an excitation beam at the interface. The estimated resolution with a simple model agreed with the experimental one, and from this model, TIR-TLS microscopy has the same resolution as that of ordinary optical microscopy. The microscopy by TIR-TLS was applied to a sample whose contrast was too weak to be visually seen, and an image of the sample was obtained without any loss of resolution.  相似文献   

9.
Polymeric thin films are widely used in microelectronic applications for a variety of purposes. These films may possess completely isotropic material properties and yet still exhibit anisotropic effects due to the constraining influence of the substrate coupling into the film behavior via the film Poisson ratio. A theoretical model of this effect on the through-plane thermal properties of isotropic thin films for single layer (thin film rigidly clamped) and bilayer (thin film on substrate, e.g., silicon wafer) has been developed based on the assumption that the material follows Hooke's law in all directions. Finite element analyses using ANSYS 5.0A have also been performed to confirm theoretical results both for single-layer and bilayer models. In the case of Poisson ratio of 0.5, the effective coefficient of thermal expansion (CTE) in the thickness direction can be as high as three times that of the unconstrained film. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
Major application of optically-induced thermal waves to the thermal and thermodynamic analysis of solids are reviewed. The spectrum of available techniques,from the conventional photoacoustic detection to novel photothermal laser probing and frequency multiplexing is discussed, and their utilization for the measurement of thermophysical thermal transport-related parameters of solids is presented. These include the thermal diffusivity, effusivity, conductivity and specific heat. The ability of photothermal methods to perform thermal analysis on large classes of solids, including conducting and insulating bulk materials, crystals, layered porous and coated structures, thin films and inhomogeneous thermal profiles is highlighted. Finally, special capabilities of photothermal analysis, such as the monitoring of surface thermodynamic phenomena and phase transition studies, including high-T c superconductors, are described in order to give a complete overview of the rich potential of photothermal-based methodologies.  相似文献   

11.
An alternative approach, exploiting neural networks, is proposed to develop thermal conductivity correlation of propane for the first time. In order to test the accuracy of the proposed technique and demonstrate its utility in fitting the thermal conductivity surface of propane, we have established a thermal conductivity correlation in terms of temperature and density, and then compared its predictions with those obtained by the conventional method. The results obtained are so impressive that the neural network correlation has lower overall average absolute deviations (AADs) in each data set.  相似文献   

12.
Thin films and the corresponding xerogels of CeO2 and Ce-V mixed oxides with a molar ratio equal to 2 (Ce/V=2) were prepared from CeCl3·7H2O and NH4VO3 precursors using the sol-gel route and the dip-coating technique. The thermal decomposition of both forms of samples (thin films and xerogels) were studied by dynamic TG and DSC in two different atmospheres (air and argon). For the thermal studies the thin films were deposited on aluminium foil to reduce the unfavourable substrate to film mass ratio S/F, which is a consequence of using a glass substrate. The mode of heat treatment in a tube furnace of films deposited on conductive glass was defined from the TG curves of the films. The influence of annealing conditions (temperature, atmosphere and time) on the charge capacity of the films during application of the cycling process is reported.  相似文献   

13.
Electroless gold island thin films are formed by galvanic replacement of silver reduced onto a tin-sensitized silica surface. A novel approach to create nanoparticle ensembles with tunable particle dimensions, densities, and distributions by thermal transformation of these electroless gold island thin films is presented. Deposition time is adjusted to produce monomodal ensembles of nanoparticles from 9.5 +/- 4.0 to 266 +/- 22 nm at densities from 2.6 x 1011 to 4.3 x 108 particles cm-2. Scanning electron microscopy and atomic force microscopy reveal electroless gold island film structures as well as nanoparticle dimensions, densities, and distributions obtained by watershed analysis. Transmission UV-vis spectroscopy reveals photoluminescent features that suggest ultrathin EL films may be smoother than sputtered Au films. X-ray diffraction shows Au films have predominantly (111) orientation.  相似文献   

14.
15.
The molecular dynamics simulation model of nanoindentation is proposed in order to study the mechanical and structural deformation properties of an ultrathin MMA (methyl methacrylate) film on a Au(111) surface. First, the significant differences in the structural arrangement of MMA thin films with different thicknesses are observed. Two layers are apparent in the thinnest MMA thin film next to the Au(111) surface, while three layer structures are apparent in the thicker film. Second, this study examines the indentation tip that penetrates the MMA thin film into the Au(111) substrate in order to understand the influence of the interface on the properties and deformation behavior in both the thin film and substrate. The result shows that the indentation force is influenced both by the layer structure and by the thickness of the MMA film. The thinnest case exhibits different deformation behavior from that of the thicker cases. In addition, the deformation of MMA molecules becomes significant at the interface between the MMA film and the Au(111) surface with the increase of film thickness, and detailed deformation behavior of the Au surface for different thicknesses of MMA film is reported in this paper. Finally, both the rigid and the active models for the indentation tip are utilized in the simulation to examine the interaction differences between the tip and the film and the deformation mechanism.  相似文献   

16.
A comparative analysis of dark conductivity and photoconductivity of cobalt(II) etioporphyrin, Co(II)EP, thin films in the presence of various gases was performed. The major contribution to conductivity of both types was made by oxygen molecules adsorbed on the surface of the gas sensitive layer. The concentration of adsorbed oxygen molecules increased under light action on the surface of films, which increased film conductivity at the given temperature. Light action could be used to reach maximum sensor sensitivity of Co(II)EP films toward ammonia at room temperature.  相似文献   

17.
In-situ thermal ellipsometric analysis is used to elucidate new and fine-scale details on the thermally driven densification, pyrolysis, crystallization, and sintering of dense and ordered mesoporous titania thin films prepared by evaporation-induced self-assembly. The role of the heating schedule, initial film thickness, nature of the substrate and templating agent, solution aging, and presence of water and other additives in the calcination environment is examined. Each of these parameters is shown to have unique and often substantial effects on the final film structure, while the technique itself provides detailed insight into the chemical origin and evolution of these effects. In-situ monitoring and control over the governing chemical processes, such as high-temperature adsorption phenomena that impact nanocrystal growth, is also demonstrated. The evolution of both the porosity and chemical processes occurring inside these materials are evaluated, including extraction of kinetic parameters for the pyrolysis of the template and crystallization of the matrix walls. The latter is shown to be strongly dependent on the presence of mesoscale ordering with ordered cubic films indicating a 1D diffusion-limited crystallization process and dense films following a 3D diffusion-limited process. Less well-ordered mesoporous films, despite similarities in pore volume and pore size distributions, are kinetically more reminiscent of dense films in terms of crystallization. In-situ thermal ellipsometry, by detailing the evolution of the thermally driven chemistry and ceramization that dictate the final film properties, provides immensely important insight into the synthesis and optimization of advanced functional materials based on titania and other metal oxide thin films.  相似文献   

18.
This study develops a technique for enhancing the electrical conductivity and optical transmittance of transparent double-walled carbon nanotube (DWNT) film. Silver nanoparticles were modified with a NH(2)(CH(2))(2)SH self-assembled monolayer terminated by amino groups and subsequent surface condensation that reacted with functionalized DWNTs. Ag nanoparticles were grafted on the surface of the DWNTs. The low sheet resistance of the resulting thin conductive film on a polyethylene terephthalate (PET) substrate was due to the increased contact areas between DWNTs and work function by grafting Ag nanoparticles on the DWNT surfaces. Increasing the contact area between DWNTs and work function improved the conductivity of the DWNT-Ag thin films. The prepared DWNT-Ag thin films had a sheet resistance of 53.4 Ω/sq with 90.5% optical transmittance at a 550 nm wavelength. After treatment with HNO(3) and annealing at 150 °C for 30 min, a lower sheet resistance of 45.8 Ω/sq and a higher transmittance of 90.4% could be attained. The value of the DC conductivity to optical conductivity (σ(DC)/σ(OP)) ratio is 121.3.  相似文献   

19.
A study of the thermal degradation under inert and oxidative conditions of LDPE and three 5-wt% nanocomposites has been performed. The bases of comparison were the geometries of the nanofillers (spherical, fibrous and laminar) and the sample thickness. Homogeneous and well-dispersed materials were obtained with the three nanoparticles, ensuring a relevant comparative analysis.The thermal degradation curves obtained from TGA under nitrogen flow did not show significant differences in behaviour within the nanocomposites and the reference LDPE. However, the results for the thermo-oxidation study showed a strong stabilization effect for both fibrous and laminar silicates, but not for the spherical silica nanoparticles. A kinetic study of the degradation under isothermal conditions showed that the nanocomposites made from fibrous and laminar silicates degraded following the mechanisms observed for thin films independent of the sample thickness. These results suggested the occurrence of a protective layer against thermo-oxidation on the film surface. Chemical analysis of the degraded surfaces by IR and EDX measurements gave data to explain these differences in behaviour.  相似文献   

20.
We have used silicon micromachining techniques to fabricate devices for measuring specific heat or other calorimetric signals from microgram-quantity samples over a temperature range from 1.7 to at least 525 K in magnetic fields to date up to 8 T. The devices are based on a robust silicon-nitride membrane with thin film heaters and thermometers. Different types of thermometers are used for different purposes and in different temperature ranges. These devices are particularly useful for thin film samples (typically 100-400 nm thick at present) deposited directly onto the membrane through a Si micromachined evaporation mask. They have also been used for small bulk samples attached by conducting grease, Ga or In, and for powder samples dissolved in a solvent and dropped onto devices. The measurement technique used (relaxation method) is particularly suited to high field measurements because the thermal conductance can be measured once in zero field and is field independent, while the time constant of the relaxation does not depend on thermometer calibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号