首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The steady mixed convection boundary-layer flow over a vertical impermeable surface in a porous medium saturated with water at 4°C (maximum density) when the surface heat flux varies as x m and the velocity outside the boundary layer varies as x (1+2m)/2, where x measures the distance from the leading edge, is discussed. Assisting and opposing flows are considered with numerical solutions of the governing equations being obtained for general values of the flow parameters. For opposing flows, there are dual solutions when the mixed convection parameter λ is greater than some critical value λ c (dependent on the power-law index m). For assisting flows, solutions are possible for all values of λ. A lower bound on m is found, m > −1 being required for solutions. The nature of the critical point λ c is considered as well as various limiting forms; the forced convection limit (λ = 0), the free convection limit (λ → ∞) and the limits as m → ∞ and as m → −1.  相似文献   

2.
This paper analyzes the variable viscosity effects on non-Darcy free or mixed convection flow on a vertical surface in a fluid saturated porous medium. The viscosity of the fluid is assumed to be a inverse linear function of temperature. Velocity and heat transfer are found to be significantly affected by the variable viscosity parameter, Ergun number, Peclet number or Rayleigh number.  相似文献   

3.
In this paper we have numerically investigated the existence and uniqueness of a vertically flowing fluid passed a model of a thin vertical fin in a saturated porous media. We have assumed the two-dimensional mixed convection from a fin, which is modelled as a fixed, semi-infinite vertical surface, embedded in a fluid-saturated porous media under the boundary-layer approximation. We have taken the temperature, in excess of the constant temperature in the ambient fluid on the fin, to vary as  , where is measured from the leading edge of the plate and λ is a fixed constant. The Rayleigh number is assumed to be large so that the boundary-layer approximation may be made and the fluid velocity at the edge of the boundary-layer is assumed to vary as . The problem then depends on two parameters, namely λ and , the ratio of the Rayleigh to Péclet numbers. It is found that when λ>0 (<0) there are (is) dual (unique) solution(s) when is grater than some negative values of (which depends on λ). When λ<0 there is a range of negative value of (which depends on λ) for which dual solutions exist and for both λ>0 and λ<0 there is a negative value of (which depends on λ) for which there is no solution. Finally, solutions for 0<1 and 1 have been obtained.  相似文献   

4.
In this work, the conjugated heat transfer characteristics of a thin vertical strip of finite length, placed in a porous medium has been studied using numerical and asymptotic techniques. The nondimensional temperature distribution in the strip and the reduced Nusselt number at the top of the strip are obtained as a function of the thermal penetration parameter s, which measures the thermal region where the temperature of the strip decays to the ambient temperature of the surrounding fluid. The numerical values of this nondimensional parameter permits to classify the different physical regimes, showing different solutions: a thermally long behaviour, an intermediate transition and a short strip limit.  相似文献   

5.
The problem of mixed convection about non-isothermal vertical surfaces in a saturated porous medium is analysed using boundary layer approximations. The analysis is made assuming that the surface temperature varies as an arbitrary function of the distance from the origin. A perturbation technique has been applied to obtain the solutions. Using the differentials of the wall temperature, which are functions of distance along the surface, as perturbation elements, universal functions are derived for various values of the governing parameter Gr/Re. Both aiding and opposing flows are considered. The universal functions obtained can be used to estimate the heat transfer and fluid velocity inside the boundary layer for any type of wall temperature variation. As a demonstration of the method, heat transfer results have been presented for the case of the wall temperature varying as a power function of the distance from the origin. The results have been studied for various combinations of the parameters Gr/Re and the power index m, taking both aiding and opposing flows into consideration. On comparing these results with those obtained by a similarity analysis, the agreement is found to be good.  相似文献   

6.
The problem of steady mixed convection boundary layer flow over a vertical impermeable flat plate in a porous medium saturated with water at 4°C (maximum density) when the temperature of the plate varies as x m and the velocity outside boundary layer varies as x 2 m , where x measures the distance from the leading edge of the plate and m is a constant is studied. Both cases of the assisting and the opposing flows are considered. The plate is aligned parallel to a free stream velocity U oriented in the upward or downward direction, while the ambient temperature is T = T m (temperature at maximum density). The mathematical models for this problem are formulated, analyzed and simplified, and further transformed into non-dimensional form using non-dimensional variables. Next, the system of governing partial differential equations is transformed into a system of ordinary differential equations using the similarity variables. The resulting system of ordinary differential equations is solved numerically using a finite-difference method known as the Keller-box scheme. Numerical results for the non-dimensional skin friction or shear stress, wall heat transfer, as well as the temperature profiles are obtained and discussed for different values of the mixed convection parameter λ and the power index m. All the numerical solutions are presented in the form of tables and figures. The results show that solutions are possible for large values of λ and m for the case of assisting flow. Dual solutions occurred for the case of opposing flow with limited admissible values of λ and m. In addition, separation of boundary layers occurred for opposing flow, and separation is delayed for the case of water at 4°C (maximum density) compared to water at normal temperature.  相似文献   

7.
An analysis is presented with magnetohydrodynamics natural convective flow of a viscous Newtonian fluid saturated porous medium in a vertical slot. The flow in the porous media has been modeled using the Brinkman model. The fully-developed two-dimensional flow from capped to open ends is considered for which a continuum of solutions is obtained. The influence of pertinent parameters on the flow is delineated and appropriate conclusions are drawn. The asymptotic behaviour and the volume flux are analyzed and incorporated graphically for the three-parameter family of solution.  相似文献   

8.
We examine the combined effect of spatially stationary surface waves and the presence of fluid inertia on the free convection induced by a vertical heated surface embedded in a fluid-saturated porous medium. We consider the boundary-layer regime where the Darcy-Rayleigh number, Ra, is very large, and assume that the surface waves have O(1) amplitude and wavelength. The resulting boundary-layer equations are found to be nonsimilar only when the surface is nonuniform and inertia effects are present; self-similarity results when either or both effects are absent. Detailed results for the local and global rates of heat transfer are presented for a range of values of the inertia parameter and the surface wave amplitude.  相似文献   

9.
In this paper, we study the interaction of peristalsis with heat transfer for the flow of a viscous fluid in a vertical porous annular region between two concentric tubes. Long wavelength approximation (that is, the wavelength of the peristaltic wave is large in comparison with the radius of the tube) is used to linearise the governing equations. Using the perturbation method, the solutions are obtained for the velocity and the temperature fields. Also, the closed form expressions are derived for the pressure-flow relationship and the heat transfer at the wall. The effect of pressure drop on flux is observed to be almost negligible for peristaltic waves of large amplitude; however, the mean flux is found to increase by 10-12% as the free convection parameter increases from 1 to 2. Also, the heat transfer at the wall is affected significantly by the amplitude of the peristaltic wave. This warrants further study on the effects of peristalsis on the flow and heat transfer characteristics.  相似文献   

10.
The problem of non-Darcy natural convection adjacent to a vertical cylinder embedded in a thermally stratified porous medium has been analyzed. Nonsimilarity solutions are obtained for the case that the ambient temperature increases linearly with height of the cylinder. A generalized flow model was used in the present study to include the effects of the macroscopic viscous term and the microscopic inertial force. Also, the thermal dispersion effect is considered in the energy equation. Thus, the main aim of this work is to examine the effects of thermal stratification and non-Darcy flow phenomena on the free convection flow and heat transfer characteristics. It was found that the present problem depends on six parameters, namely, the local thermal stratification parameter ξ, the boundary effect parameter Bp, the modified Grashof number Gr*, wall temperature exponent m, the curvature parameter ω, and the modified Rayleigh number based on pore diameter Ra d . The impacts of these governing parameters on the local heat transfer parameter are discussed in great detail. Also, representative velocity and temperature profiles are presented at selected values of the thermal stratification parameter. In general, the local heat transfer parameter is increased with increasing the values of m, ω, and Ra d ; while it is decreased with increasing the values of ξ, Bp, and Gr*. Received on 19 May 1998  相似文献   

11.
The present study is devoted to investigate the influences of viscous dissipation on buoyancy induced flow over a horizontal or a vertical flat plate embedded in a non-Newtonian fluid saturated porous medium. The Ostwald-de Waele power-law model is used to characterize the non-Newtonian fluid behavior. Similarity solutions for the transformed governing equations are obtained with prescribed variable surface temperature (PT) or with prescribed variable surface heat flux (PHF) for the horizontal plate case. While, the similarity solutions are obtained with prescribed variable surface heat flux for the vertical plate case. Different similar transformations, for each case, are used. Numerical results for the details of the velocity and temperature profiles are shown on graphs. Nusselt number associated with temperature distributions and excess surface temperature associated with heat flux distributions which are entered in tables have been presented for different values of the power-law index n and the exponent as well as Eckert number.  相似文献   

12.
The steady mixed convection boundary-layer flow over a vertical impermeable surface in a porous medium saturated with water close to its maximum density is considered for uniform wall temperature and outer flow. The problem can be reduced to similarity form and the resulting equations are examined in terms of a mixed convection parameter λ and a parameter δ which measures the difference between the ambient temperature and the temperature at the maximum density. Both assisting (λ > 0) and opposing flows (λ < 0) are considered. A value δ0 is found for which there are dual solutions for a range λc < λ < 0 of λ (the value of λc dependent on δ) and single solutions for all λ ≥ 0. Another value of δ1 of δ, with δ1 > δ0, is found for which there are dual solutions for a range 0 < λ < λc of positive values of λ, with solutions for all λ≤ 0. There is also a range δ0 <  δ < δ1 where there are solutions only for a finite range of λ, with critical points at both positive and negative values of λ, thus putting a finite limit on the range of existence of solutions.  相似文献   

13.
An analysis is presented for the calculation of heat transfer due to free convective flow along a vertical plate embedded in a porous medium with an arbitrarily varying surface heat flux. By applying the appropriate coordinate transformations and the Merk series, the governing energy equation is expressed as a set of ordinary differential equations. Numerical solutions are presented for these equations which represent universal functions and several computational examples are provided.  相似文献   

14.
In the past, the analysis of species separation in a thermogravitational column filled with porous media has been based on strong dependency of thermal and molecular diffusion to dispersion. In this work, we suggest an alternative and show that the dispersion effect is negligible for the conditions in a packed hermogravitational column and that compositional dependency of the thermal diffusion should be accounted for.  相似文献   

15.
This paper deals with the magnetohydrodynamic (MHD) flow of an Oldroyd 8-constant fluid in a porous medium when no-slip condition is no longer valid. Modified Darcy's law is used in the flow modelling. The non-linear differential equation with non-linear boundary conditions is solved numerically using finite difference scheme in combination with an iterative technique. Numerical results are obtained for the Couette, Poiseuille and generalized Couette flows. The effects of slip parameters on the velocity profile are discussed.  相似文献   

16.
The problem of three dimensional unsteady convection flow through a porous medium, with effect of mass transfer bounded by an infinite vertical porous plate is discussed, when the suction at the plate is transverse sinusoidal and the plate temperature oscillates in time about a constant mean. Assuming the free stream velocity to be uniform, approximate solutions are obtained for the flow field, the temperature field, the skin-friction and the rate of heat transfer. The dependence of solution on Pr (Prandtl number), Gr (Grashof number based on temperature), Gc (modified Grashof number based on concentration difference), Sc (Schimdt number), the frequency and the permeability parameter is also investigated.  相似文献   

17.
An idealized model of a porous rock consisting of a bundle of capillary tubes whose cross-sections are regular polygons is used to assess the importance of viscous coupling or lubrication during simultaneous oil-water flow. Fluids are nonuniformly distributed over tubes of different characteristic dimension because of the requirements of capillary equilibrium and the effect of interfacial viscosity at oil-water interfaces is considered. With these assumptions, we find that the importance of viscous coupling depends on the rheology of the oil-water interface. Where the interfacial shear viscosity is zero, viscous coupling leading to a dependence of oil relative permeability on oil-water viscosity ratio for viscosity ratios greater than one is important for a range of pore cross-section shapes and pore size distributions. For nonzero interfacial shear viscosity, viscous coupling is reduced. Using values reported in the literature for crude oil-brine systems, we find no viscous coupling.  相似文献   

18.
The effect of temperature modulation on the onset of double diffusive convection in a sparsely packed porous medium is studied by making linear stability analysis, and using Brinkman-Forchheimer extended Darcy model. The temperature field between the walls of the porous layer consists of a steady part and a time dependent periodic part that oscillates with time. Only infinitesimal disturbances are considered. The effect of permeability and thermal modulation on the onset of double diffusive convection has been studied using Galerkin method and Floquet theory. The critical Rayleigh number is calculated as a function of frequency and amplitude of modulation, Vadasz number, Darcy number, diffusivity ratio, and solute Rayleigh number. Stabilizing and destabilizing effects of modulation on the onset of double diffusive convection have been obtained. The effects of other parameters are also discussed on the stability of the system. Some results as the particular cases of the present study have also been obtained. Also the results corresponding to the Brinkman model and Darcy model have been compared.  相似文献   

19.
The nonsimilar non-Darcian free-convection flow about a vertical cylinder with impermeable surface embedded in a saturated porous medium, where surface temperature of the cylinder varies as xm, a power function of distance from the leading edge, has been studied by employing the implicit finite-difference method together with the Newton's quasilinearization technique. In the present investigation, effects of the surface mass flux together with the inertial effects on the rate of heat transfer at the surface, on the velocity distribution, and on the temperature distribution are shown graphically.  相似文献   

20.
A numerical study of a non-Darcy mixed convective heat and mass transfer flow over a vertical surface embedded in a dispersion, melting, and thermal radiation is porous medium under the effects of double investigated. The set of governing boundary layer equations and the boundary conditions is transformed into a set of coupled nonlinear ordinary differential equations with the relevant boundary conditions. The transformed equations are solved numerically by using the Chebyshev pseudospectral method. Comparisons of the present results with the existing results in the literature are made, and good agreement is found. Numerical results for the velocity, temperature, concentration profiles, and local Nusselt and Sherwood numbers are discussed for various values of physical parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号