首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stereoselective Mannich reactions of aldehydes with ketimines provide chiral β-amino aldehydes that bear an α-tert-amine moiety. However, the structural variation of the ketimines is limited due to the formation of inseparable E/Z isomers, low reactivity, and other synthetic difficulties. In this study, a highly diastereodivergent synthesis of hitherto difficult-to-access β-amino aldehydes that bear a chiral α-tert-amine moiety was achieved using the amine-catalyzed Mannich reactions of aldehydes with less-activated Z-ketimines that bear both alkyl and alkynyl groups.

Stereoselective Mannich reactions of aldehydes with ketimines provide chiral β-amino aldehydes that bear an α-tert-amine moiety.  相似文献   

2.
(Ph3C)[BPh(F)4]-catalyzed Hosomi-Sakurai allylation of allylsilanes with β,γ-unsaturated α-ketoesters has been developed to give γ,γ-disubstituted α-ketoesters in high yields with excellent chemoselectivity. Preliminary mechanistic studies suggest that trityl cation dominates the catalysis, while the silyl cation plays a minor role.  相似文献   

3.
Construction of C–C bonds at the α-carbon is a challenging but synthetically indispensable approach to α-branched carbonyl motifs that are widely represented among drugs, natural products, and synthetic intermediates. Here, we describe a simple approach to generation of boron enolates in the absence of strong bases that allows for introduction of both α-alkyl and α-aryl groups in a reaction of readily accessible 1,2-dicarbonyls and organoboranes. Obviation of unselective, strongly basic and nucleophilic reagents permits carrying out the reaction in the presence of electrophiles that intercept the intermediate boron enolates, resulting in two new α-C–C bonds in a tricomponent process.

α-Branched carboxylic acids and other carbonyls are readily accessed by a metal- and base-free deoxygenative α-alkylation and α-arylation of 1,2-dicarbonyls via boron enolates, resulting in a tricomponent coupling with unconventional electrophiles.  相似文献   

4.
α-Galacto-oligosaccharides (α-GOSs) have great functions as prebiotics and therapeutics. This work established the method of batch synthesis of α-GOSs by immobilized α-galactosidase for the first time, laying a foundation for industrial applications in the future. The α-galactosidase from Aspergillus niger L63 was immobilized as cross-linked enzyme aggregates (CLEAs) nano-biocatalyst through enzyme precipitating and cross-linking steps without using carriers. Among the tested agents, the ammonium sulfate showed high precipitation efficacy and induced regular structures of α-galactosidase CLEAs (Aga-CLEAs) that had been analyzed by scanning electron microscopy and Fourier-transform infrared spectroscopy. Through optimization by response surface methodology, the ammonium sulfate-induced Aga-CLEAs achieved a high activity recovery of around 90% at 0.55 U/mL of enzymes and 36.43 mM glutaraldehyde with cross-linking for 1.71 h. Aga-CLEAs showed increased thermal stability and organic solvent tolerance. The storage ability was also improved since it maintained 74.5% activity after storing at 4 °C for three months, significantly higher than that of the free enzyme (21.6%). Moreover, Aga-CLEAs exhibited excellent reusability in the α-GOSs synthesis from galactose, retaining above 66% of enzyme activity after 10 batch reactions, with product yields all above 30%.  相似文献   

5.
α-Amino acids and α-keto acids are versatile building blocks for the synthesis of several commercially valuable products in the food, agricultural, and pharmaceutical industries. In this study, a novel transamination-like reaction catalyzed by leucine dehydrogenase was successfully constructed for the efficient enzymatic co-synthesis of α-amino acids and α-keto acids. In this reaction mode, the α-keto acid substrate was reduced and the α-amino acid substrate was oxidized simultaneously by the enzyme, without the need for an additional coenzyme regeneration system. The thermodynamically unfavorable oxidation reaction was driven by the reduction reaction. The efficiency of the biocatalytic reaction was evaluated using 12 different substrate combinations, and a significant variation was observed in substrate conversion, which was subsequently explained by the differences in enzyme kinetics parameters. The reaction with the selected model substrates 2-oxobutanoic acid and L-leucine reached 90.3% conversion with a high total turnover number of 9.0 × 106 under the optimal reaction conditions. Furthermore, complete conversion was achieved by adjusting the ratio of addition of the two substrates. The constructed reaction mode can be applied to other amino acid dehydrogenases in future studies to synthesize a wider range of valuable products.  相似文献   

6.
Armillariella tabescens (Scop.) Sing., a mushroom of the family Tricholomataceae, has been used in traditional oriental medicine to treat cholecystitis, improve bile secretion, and regulate bile-duct pressure. The present study evaluated the estrogen-like effects of A. tabescens using a cell-proliferation assay in an estrogen-receptor-positive breast cancer cell line (MCF-7). We found that the methanol extract of A. tabescens fruiting bodies promoted cell proliferation in MCF-7 cells. Using bioassay-guided fractionation of the methanol extract and chemical investigation, we isolated and identified four steroids and four fatty acids from the active fraction. All eight compounds were evaluated by E-screen assay for their estrogen-like effects in MCF-7 cells. Among the tested isolates, only (3β,5α,22E)-ergost-22-en-3-ol promoted cell proliferation in MCF-7 cells; this effect was mitigated by the ER antagonist, ICI 182,780. The mechanism underlying the estrogen-like effect of (3β,5α,22E)-ergost-22-en-3-ol was evaluated using Western blot analysis to detect the expression of extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), Akt, and estrogen receptor α (ERα). We found that (3β,5α,22E)-ergost-22-en-3-ol induced an increase in phosphorylation of ERK, PI3K, Akt, and ERα. Together, these experimental results suggest that (3β,5α,22E)-ergost-22-en-3-ol is responsible for the estrogen-like effects of A. tabescens and may potentially aid control of estrogenic activity in menopause.  相似文献   

7.
Alpha- and beta-linked 1,3-glucans have been subjected to conversion with p-toluenesulfonic acid (tosyl) chloride and triethylamine under homogeneous reaction conditions in N,N-dimethyl acetamide/LiCl. Samples with a degree of substitution of tosyl groups (DSTs) of up to 1.91 were prepared by applying 5 mol reagent per mole repeating unit. Hence, the reactivity of α-1,3-glucan is comparable with cellulose and starch, while the β-1,3-linked glucan curdlan is less reactive. The samples dissolve in aprotic dipolar media independent of the DSTs and possess a solubility in less polar solvents that depends on the DSTs. NMR studies on the tosyl glucans and of the peracylated derivatives showed a preferred tosylation of position 2 of the repeating unit. However, the selectivity is less pronounced compared with starch. It could be concluded that the α-configurated glycosidic bond directs tosyl groups towards position 2.  相似文献   

8.
Diabetes mellitus is a metabolic disorder and is a global challenge to the current medicinal chemists and pharmacologists. This research has been designed to isolate and evaluate antidiabetic bioactives from Fragaria indica. The crude extracts, semi-purified and pure bioactives have been used in all in vitro assays. The in vitro α-glucosidase, α-amylase and DPPH free radical activities have been performed on all plant samples. The initial activities showed that ethyl acetate (Fi.EtAc) was the potent fraction in all the assays. This fraction was initially semi-purified to obtain Fi.EtAc 1–3. Among the semi-purified fractions, Fi.EtAc 2 was dominant, exhibiting potent IC50 values in all the in vitro assays. Based on the potency and availability of materials, Fi.EtAc 2 was subjected to further purification to obtain compounds 1 (2,4-dichloro-6-hydroxy-3,5-dimethoxytoluene) and 2 (2-methyl-6-(4-methylphenyl)-2-hepten-4-one). The two isolated compounds were characterized by mass and NMR analyses. The compounds 1 and 2 showed excellent inhibitions against α-glucosidase (21.45 for 1 and 15.03 for 2 μg/mL), α-amylase (17.65 and 16.56 μg/mL) and DPPH free radicals (7.62 and 14.30 μg/mL). Our study provides baseline research for the antidiabetic bioactives exploration from Fragaria indica. The bioactive compounds can be evaluated in animals-based antidiabetic activity in future.  相似文献   

9.
The selectivity of α4β2 nAChR agonists over the α3β4 nicotinic receptor subtype, predominant in ganglia, primarily conditions their therapeutic range and it is still a complex and challenging issue for medicinal chemists and pharmacologists. Here, we investigate the determinants for such subtype selectivity in a series of more than forty α4β2 ligands we have previously reported, docking them into the structures of the two human subtypes, recently determined by cryo-electron microscopy. They are all pyrrolidine based analogues of the well-known α4β2 agonist N-methylprolinol pyridyl ether A-84543 and differ in the flexibility and pattern substitution of their aromatic portion. Indeed, the direct or water mediated interaction with hydrophilic residues of the relatively narrower β2 minus side through the elements decorating the aromatic ring and the stabilization of the latter by facing to the not conserved β2-Phe119 result as key distinctive features for the α4β2 affinity. Consistently, these compounds show, despite the structural similarity, very different α4β2 vs. α3β4 selectivities, from modest to very high, which relate to rigidity/extensibility degree of the portion containing the aromatic ring and to substitutions at the latter. Furthermore, the structural rationalization of the rat vs. human differences of α4β2 vs. α3β4 selectivity ratios is here proposed.  相似文献   

10.
The Scedosporium genus is an emerging pathogen with worldwide prevalence and high mortality rates that gives multidrug resistance to antifungals; therefore, pharmacological alternatives must be sought for the treatment of diseases caused by this fungus. In the present project, six new α-aminophosphates were synthesized by the Kabachnik–Fields multicomponent reaction by vortex agitation, and six new monohydrolyzed α-aminophosphonic acids were synthesized by an alkaline hydrolysis reaction. Antifungal activity was evaluated using the agar diffusion method as an initial screening to determine the most active compound compared to voriconazole; then it was evaluated against 23 strains of the genus Scedosporium following the M38-A2 protocol from CLSI (activity range: 648.76–700 µg/mL). Results showed that compound 5f exhibited the highest antifungal activity according to the agar diffusion method (≤1 mg/mL). Cytotoxicity against healthy COS-7 cells was also evaluated by the MTT assay and it was shown that compound 5f exhibits a lower toxicity in comparison to voriconazole at the same concentration (1000 µM). A docking study was conducted afterwards, showing that the possible mechanism of action of the compound is through the inhibition of allosteric 14-α-demethylase. Taking these results as a basis, 5f is presented as a compound with attractive properties for further studies.  相似文献   

11.
Using the classical Ugi four-component reaction to fuse an amine, ketone, carboxylic acid, and isocyanide, here we prepared a short library of N-alkylated α,α-dialkylglycine derivatives. Due to the polyfunctionality of the dipeptidic scaffold, this highly steric hindered system shows an interesting acidolytic cleavage of the C-terminal amide. In this regard, we studied the structure-acid lability relationship of the C-terminal amide bond (cyclohexylamide) of N-alkylated α,α-dialkylglycine amides 1a–n in acidic media and, afterward, it was established that the most important structural features related to its cleavage. Then, it was demonstrated that electron-donating effects in the aromatic amines, flexible acyl chains (Gly) at the N-terminal and the introduction of cyclic compounds into dipeptide scaffolds, increased the rate of acidolysis. All these effects are related to the ease with which the oxazolonium ion intermediate forms and they promote the proximity of the central carbonyl group to the C-terminal amide, resulting in C-terminal amide cleavage. Consequently, these findings could be applied for the design of new protecting groups, handles for solid-phase synthesis, and linkers for conjugation, due to its easily modulable and the fact that it allows to fine tune its acid-lability.  相似文献   

12.
17α-Estradiol (αE2) is a natural diastereoisomer of 17β-estradiol (E2). It is well known that αE2 can bind to estrogen receptors. However, its biological activity is less than that of E2 and is species and tissue specific. The goal of our study was to propose the mechanism of αE2 hormonal response in rat sperm during their capacitation in vitro and compare it with a previously studied mouse model. Concentration changes in externally added αE2 during capacitation of rat sperm were monitored by the high-performance liquid chromatographic method with tandem mass spectrometric detection (HPLC-MS/MS). The calculated values of relative concentrations Bt were subjected to kinetic analysis. The findings indicated that αE2 in rat sperm did not trigger autocatalytic reaction, in contrast to the mouse sperm, and that the initiation of the hormone penetration through the sperm plasma membrane was substantially faster in rats.  相似文献   

13.
Celastrus hindsii is a popular medicinal plant in Vietnam and Southeast Asian countries as well as in South America. In this study, an amount of 12.05 g of an α-amyrin and β-amyrin mixture was isolated from C. hindsii (10.75 g/kg dry weight) by column chromatography applying different solvent systems to obtain maximum efficiency. α-Amyrin and β-amyrin were then confirmed by gas chromatography-mass spectrometry (GC-MS), electrospray ionization-mass spectrometry (ESI-MS), and nuclear magnetic resonance (NMR). The antioxidant activities of the α-amyrin and β-amyrin mixture were determined via 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,20-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays with IC50 of 125.55 and 155.28 µg/mL, respectively. The mixture exhibited a high potential for preventing gout by inhibiting a relevant key enzyme, xanthine oxidase (XO) (IC50 = 258.22 µg/mL). Additionally, an important enzyme in skin hyperpigmentation, tyrosinase, was suppressed by the α-amyrin and β-amyrin mixture (IC50 = 178.85 µg/mL). This study showed that C. hindsii is an abundant source for the isolation of α-amyrin and β-amyrin. Furthermore, this was the first study indicating that α-amyrin and β-amyrin mixture are promising in future therapies for gout and skin hyperpigmentation.  相似文献   

14.
α-Functionalized α,β-unsaturated aldehydes is an important class of compounds, which are widely used in fine organic synthesis, biology, medicine and pharmacology, chemical industry, and agriculture. Some of the 2-substituted 2-alkenals are found to be the key metabolites in plant and animal cells. Therefore, the development of efficient methods for their synthesis attracts the attention of organic chemists. This review focusses on the recent advances in the synthesis of 2-functionally substituted 2-alkenals. The approaches to the preparation of α-alkyl α,β-unsaturated aldehydes are not included in this review.  相似文献   

15.
α-synuclein (α-syn) is a major culprit of Parkinson’s disease (PD), although lipoprotein metabolism is very important in the pathogenesis of PD. α-syn was expressed and purified using the pET30a expression vector from an E. coli expression system to elucidate the physiological effects of α-syn on lipoprotein metabolism. The human α-syn protein (140 amino acids) with His-tag (8 amino acids) was expressed and purified to at least 95% purity. Isoelectric focusing gel electrophoresis showed that the isoelectric point (pI) of α-syn and apoA-I were pI = 4.5 and pI = 6.4, respectively. The lipid-free α-syn showed almost no phospholipid-binding ability, while apoA-I showed rapid binding ability with a half-time (T1/2) = 8 ± 0.7 min. The α-syn and apoA-I could be incorporated into the reconstituted HDL (rHDL, molar ratio 95:5:1:1, palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC):cholesterol:apoA-I:α-syn with the production of larger particles (92 Å) than apoA-I-rHDL (86 and 78 Å) and α-syn-rHDL (65 Å). An rHDL containing both apoA-I and α-syn showed lower α-helicity around 45% with a red shift of the Trp wavelength maximum fluorescence (WMF) from 339 nm, while apoA-I-HDL showed 76% α-helicity and 337 nm of WMF. The denaturation by urea addition showed that the incorporation of α-syn in rHDL caused a larger increase in the WMF than apoA-I-rHDL, suggesting that the destabilization of the secondary structure of apoA-I by the addition of α-syn. On the other hand, the addition of α-syn induced two-times higher resistance to rHDL glycation at apoA-I:α-syn molar ratios of 1:1 and 1:2. Interestingly, low α-syn in rHDL concentrations, molar ratio of 1:0.5 (apoA-I:α-syn), did not prevent glycation with more multimerization of apoA-I. In the lipid-free and lipid-bound state, α-syn showed more potent antioxidant activity than apoA-I against cupric ion-mediated LDL oxidation. On the other hand, microinjection of α-syn (final 2 μM) resulted in 10% less survival of zebrafish embryos than apoA-I. A subcutaneous injection of α-syn (final 34 μM) resulted in less tail fin regeneration than apoA-I. Interestingly, incorporation of α-syn at a low molar ratio (apoA-I:α-syn, 1:0.5) in rHDL resulted destabilization of the secondary structure and impairment of apoA-I functionality via more oxidation and glycation. However, at a higher molar ratio of α-syn in rHDL (apoA-I:α-syn = 1:1 or 1:2) exhibited potent antioxidant and anti-glycation activity without aggregation. In conclusion, there might be a critical concentration of α-syn and apoA-I in HDL-like complex to prevent the aggregation of apoA-I via structural and functional enhancement.  相似文献   

16.
Chiral α-amino ketones are common structural motifs in natural products and pharmaceuticals, as well as important synthons in organic synthesis. Thus, establishing efficient methods for preparing compounds with these privileged scaffolds is an important endeavor in synthetic chemistry. Herein we disclose a new catalytic asymmetric approach for the synthesis of chiral α-amino ketones through a chiral palladium-catalyzed arylation reaction of in situ generated challenging α-keto imines from previously unreported C-acyl N-sulfonyl-N,O-aminals, with arylboronic acids. The current reaction offers a straightforward approach to the asymmetric synthesis of acyclic α-amino ketones in a practical and highly stereocontrolled manner. Meanwhile, the multiple roles of the chiral Pd(ii) complex catalyst in the reaction were also reported.

Chiral α-amino ketones are common structural motifs in natural products and pharmaceuticals, as well as important synthons in organic synthesis.  相似文献   

17.
α-Cubebenoate derived from Schisandra chinensis has been reported to possess anti-allergic, anti-obesity, and anti-inflammatory effects and to exhibit anti-septic activity, but its anti-cancer effects have not been investigated. To examine the anti-cancer activity of α-cubebenoate, we investigated its effects on the proliferation, apoptosis, and metastasis of CT26 cells. The viabilities of CT26 cells (a murine colorectal carcinoma cell line) and HCT116 cells (a human colon cancer cell line) were remarkably and dose-dependently diminished by α-cubebenoate, whereas the viability of CCD-18Co cells (a normal human fibroblast cell line) were unaffected. Furthermore, α-cubebenoate treatment increased the number of apoptotic CT26 cells as compared with Vehicle-treated cells and increased Bax, Bcl-2, Cas-3, and Cleaved Cas-3 protein levels by activating the MAP kinase signaling pathway. α-Cubebenoate also suppressed CT26 migration by regulating the PI3K/AKT signaling pathway. Furthermore, similar reductions were observed in the expression levels of some migration-related proteins including VEGFA, MMP2, and MMP9. Furthermore, reduced VEGFA expression was found to be accompanied by the phosphorylations of FAK and MLC in the downstream signaling pathway of adhesion protein. The results of the present study provide novel evidence that α-cubebenoate can stimulate apoptosis and inhibit metastasis by regulating the MAPK, PI3K/AKT, and FAK/MLC signaling pathways.  相似文献   

18.
Soy diet is thought to help prevent cardiovascular diseases in humans. Isoflavone, which is abundant in soybean and other legumes, has been reported to possess antiplatelet activity and potential antithrombotic effect. Our study aims to elucidate the potential target of soy isoflavone in platelet. The anti-thrombosis formation effect of genistein and daidzein was evaluated in ex vivo perfusion chamber model under low (300 s−1) and high (1800 s−1) shear forces. The effect of genistein and daidzein on platelet aggregation and spreading was evaluated with platelets from both wildtype and GPIbα deficient mice. The interaction of these soy isoflavone with 14-3-3ζ was detected by surface plasmon resonance (SPR) and co-immunoprecipitation, and the effect of αIIbβ3-mediated outside-in signaling transduction was evaluated by western blot. We found both genistein and daidzein showed inhibitory effect on thrombosis formation in perfusion chamber, especially under high shear force (1800 s−1). These soy isoflavone interact with 14-3-3ζ and inhibited both GPIb-IX and αIIbβ3-mediated platelet aggregation, integrin-mediated platelet spreading and outside-in signaling transduction. Our findings indicate that 14-3-3ζ is a novel target of genistein and daidzein. 14-3-3ζ, an adaptor protein that regulates both GPIb-IX and αIIbβ3-mediated platelet activation is involved in soy isoflavone mediated platelet inhibition.  相似文献   

19.
α-glucosidase is a major enzyme that is involved in starch digestion and type 2 diabetes mellitus. In this study, the inhibition of hypericin by α-glucosidase and its mechanism were firstly investigated using enzyme kinetics analysis, real-time interaction analysis between hypericin and α-glucosidase by surface plasmon resonance (SPR), and molecular docking simulation. The results showed that hypericin was a high potential reversible and competitive α-glucosidase inhibitor, with a maximum half inhibitory concentration (IC50) of 4.66 ± 0.27 mg/L. The binding affinities of hypericin with α-glucosidase were assessed using an SPR detection system, which indicated that these were strong and fast, with balances dissociation constant (KD) values of 6.56 × 10−5 M and exhibited a slow dissociation reaction. Analysis by molecular docking further revealed that hydrophobic forces are generated by interactions between hypericin and amino acid residues Arg-315 and Tyr-316. In addition, hydrogen bonding occurred between hypericin and α-glucosidase amino acid residues Lys-156, Ser-157, Gly-160, Ser-240, His-280, Asp-242, and Asp-307. The structure and micro-environment of α-glucosidase enzymes were altered, which led to a decrease in α-glucosidase activity. This research identified that hypericin, an anthracene ketone compound, could be a novel α-glucosidase inhibitor and further applied to the development of potential anti-diabetic drugs.  相似文献   

20.
14-3-3 proteins are abundant, intramolecular proteins that play a pivotal role in cellular signal transduction by interacting with phosphorylated ligands. In addition, they are molecular chaperones that prevent protein unfolding and aggregation under cellular stress conditions in a similar manner to the unrelated small heat-shock proteins. In vivo, amyloid β (Aβ) and α-synuclein (α-syn) form amyloid fibrils in Alzheimer’s and Parkinson’s diseases, respectively, a process that is intimately linked to the diseases’ progression. The 14-3-3ζ isoform potently inhibited in vitro fibril formation of the 40-amino acid form of Aβ (Aβ40) but had little effect on α-syn aggregation. Solution-phase NMR spectroscopy of 15N-labeled Aβ40 and A53T α-syn determined that unlabeled 14-3-3ζ interacted preferentially with hydrophobic regions of Aβ40 (L11-H21 and G29-V40) and α-syn (V3-K10 and V40-K60). In both proteins, these regions adopt β-strands within the core of the amyloid fibrils prepared in vitro as well as those isolated from the inclusions of diseased individuals. The interaction with 14-3-3ζ is transient and occurs at the early stages of the fibrillar aggregation pathway to maintain the native, monomeric, and unfolded structure of Aβ40 and α-syn. The N-terminal regions of α-syn interacting with 14-3-3ζ correspond with those that interact with other molecular chaperones as monitored by in-cell NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号