首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linear and four‐armed poly(l ‐lactide)‐block‐poly(d ‐lactide) (PLLA‐b‐PDLA) block copolymers are synthesized by ring‐opening polymerization of d ‐lactide on the end hydroxyl of linear and four‐armed PLLA prepolymers. DSC results indicate that the melting temperature and melting enthalpies of poly (lactide) stereocomplex in the copolymers are obviously lower than corresponding linear and four‐armed PLLA/PDLA blends. Compared with the four‐armed PLLA‐b‐PDLA copolymer, the similar linear PLLA‐b‐PDLA shows higher melting temperature (212.3 °C) and larger melting enthalpy (70.6 J g?1). After these copolymers blend with additional neat PLAs, DSC, and WAXD results show that the stereocomplex formation between free PLA molecular chain and enantiomeric PLA block is the major stereocomplex formation. In the linear copolymer/linear PLA blends, the stereocomplex crystallites (sc) as well as homochiral crystallites (hc) form in the copolymer/PLA cast films. However, in the four‐armed copolymer/linear PLA blends, both sc and hc develop in the four‐armed PLLA‐b‐PDLA/PDLA specimen, which means that the stereocomplexation mainly forms between free PDLA molecule and the inside PLLA block, and the outside PDLA block could form some microcrystallites. Although the melting enthalpies of stereocomplexes in the blends are smaller than that of neat copolymers, only two‐thirds of the molecular chains participate in the stereocomplex formation, and the crystallization efficiency strengthens. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1560–1567  相似文献   

2.
In this study, several asymmetric poly(L‐lactide)/poly(D‐lactide) (PLLA/PDLA) blends were prepared by adding small amounts of PDLA with different structures into linear PLLA matrix. The effect of PDLA on rheological behavior, crystallization behavior, nucleation efficiency and spherulite growth of PLLA was investigated. Rheological results indicated that PLLA/PDLA blends showed solid‐like viscoelastic behavior at low temperature (<200°C), and the cross‐linking density of PLLA/PDLA melt at 180°C followed the order: PLLA/6PDLA > PLLA/L‐PDLA > PLLA/3PDLA > PLLA/4PDLA. No‐isotherm and isotherm crystallization results indicated that the crystallization capacity of PLLA/PDLA blends was strongly related to the PDLA structure, crystallization temperature and thermal treatment temperature. Furthermore, the dimension of crystal growth during isotherm crystallization presented the obvious dependent on the PDLA structure. The nucleation efficiency of sc‐crystallites in the blends and spherulite density during isothermal crystallization were also studied. Nucleation efficiency of sc‐crystallites in the PLLA/S‐PDLA blends showed the obvious dependent on thermal treatment temperature with respect to PLLA/L‐PDLA, and nucleation efficiency sc‐crystallites in the PLLA/S‐PDLA blends first decreased and then increased as the thermal treatment temperature increased. Spherulite density of PLLA/PDLA blends was also related to thermal treatment temperature and the PDLA structure. This study has discussed the temperature dependence of the stereocomplex networks between PLLA and PDLA with different structure, and then its consequential influence on rheology and crystallization capacity of PLLA, which would provide the theoretical direction for PLA processing. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
李建波  任杰 《高分子科学》2017,35(8):974-991
Linear and star-shaped polylactides (PLA) with similar molecular weights of each arm are synthesized via ring-opening polymerization of LA with 3-butyn-l-ol and pentaerythritol as initiators,respectively.By solution blending of equivalent mass of poly(L-lactic acid)s (PLLAs) and poly(D-lactic acid)s (PDLAs),perfect PLA stereocomplexes (scPLAs) are prepared and confirmed by WAXD and FTIR analysis.Effect of chain architectures on stereocomplex crystallization is investigated by studying the non-isothermal and isothermal crystallization of linear and star-shaped polylactide stereocomplexes.In dynamic DSC and POM test,star-shaped PLLA (4sPLLA)/PDLA and PLLA/star-shaped PDLA (4sPDLA) stereocomplexes reach rapid crystallization and higher crystallinity due to larger spherulite density of star-shaped chain and excellent chain mobility of linear chain.In isothermal crystallization test,much faster crystallization and less crystallization half-time is obtained with the increase of star-shaped chain.Meanwhile,4sPLLA/PDLA and PLLA/4sPDLA are found to have the highest crystallinity,suggesting limitation of too much star-shaped chain for 4sPLLA/4sPDLA and restriction of linear chain in nucleation capacity for PLLA/PDLA.The results reveal that star-shaped chain has an important influence on the crystallization of scPLAs.  相似文献   

4.
Simultaneous solid‐state polycondensation (SSP) of the powdery prepolymers of poly(L ‐lactic acid) (PLLA) and poly(D ‐lactic acid) (PDLA) can produce entire stereocomplexed poly(lactic acid)s (sc‐PLA) with high molecular weight and can be an alternative synthetic route to sc‐PLA. Ordinary melt polycondensations of L ‐ and D ‐lactic acids gave the PLLA and PDLA prepolymers having medium molecular weight which were pulverized for blending in 1:1 ratio. The resultant powder blends were then subjected to SSP at 130–160 °C for 30 h under a reduced pressure of 0.5 Torr. Some of the products thus obtained attained a molecular weight (Mw) as high as 200 kDa, consisting of stereoblock copolymer of PLLA and PDLA. A small amount of the stereocomplex should be formed in the boundaries of the partially melted PLLA and PDLA where the hetero‐chain connection is induced to generate the blocky components. The resultant SSP products showed predominant stereocomplexation after their melt‐processing in the presence of the stereoblock components in spite of containing a small amount of racemic sequences in the homo‐chiral PLLA and PDLA chains. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3714–3722, 2008  相似文献   

5.
A nucleation efficiency scale for isotactic poly(L ‐lactide) (PLLA) was obtained with self‐nucleation and nonisothermal differential scanning calorimetry experiments. The maximum nucleation efficiency occurred at the highest concentration of self‐nucleating sites, and the minimum efficiency occurred in the absence of these sites (pure PLLA polymer melt). Blends of PLLA and isotactic poly(D ‐lactide) (PDLA) led to the formation of a 1/1 stereocomplex. In comparison with the homopolymer (PLLA), the stereocomplex had a higher melting temperature and crystallized at higher temperatures from the melt. Small stereocomplex crystallites were formed in PLLA/PDLA blends containing low concentrations of PDLA. These crystallites acted as heterogeneous nucleation sites for subsequent PLLA crystallization. Using the PLLA nucleation efficiency scale, we evaluated a series of PLLA/PDLA blends (0.25–15 wt % PDLA). A maximum nucleation efficiency of 66% was observed at 15 wt % PDLA. The nucleation efficiency was largely dependent on the thermal treatment of the sample. The nucleating ability of the stereocomplex was most efficient when it was formed well before PLLA crystallization. According to the efficiency scale, the stereocomplex was far superior to talc, a common nucleating agent for PLLA, in its ability to enhance the rate of PLLA crystallization. In comparison with the PLLA homopolymer, the addition of PDLA led to reduced spherulite sizes and a reduction in the overall extent of PLLA crystallization. The decreased extent of crystallization was attributed to the hindered mobility of the PLLA chains due to tethering by the stereocomplex. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 300–313, 2001  相似文献   

6.
Poly(l-lactide) (PLLA) and Poly(d-lactide) (PDLA) blended films (PLLA/PDLA) were prepared (5/95; 25/75; 50/50, and 75/25) by solvent casting method. Blend of PLLA and PDLA of medium molecular mass led to the formation of stereocomplex which was evidenced by differential scanning calorimetry, rheological measurement and Fourier transform infrared spectroscopy. The stereocomplex had a higher melting temperature (T m) (more than 50 °C) and crystallized at higher temperature (T c) (more than 25 °C) from the melt compared to neat PLLA and PDLA. The T m and T c gradually decreased with increasing the number of thermal scans. The enthalpy of fusion (?Hm) for stereocomplex crystallites in 50/50 blend films was the highest than that of homo-crystallites. Rheological measurement at a temperature of 180–195 °C revealed that the neat PLA was predominantly liquid-like behavior (G″ > G′) which transformed to extreme solid-like behavior by incorporation of PDLA into PLLA. Among blends, 50/50 PDLA/PLLA showed the maximum mechanical strength (G′) followed by 25/75, 75/25, and 5/95 blends. The significant increase in mechanical strength is believed to be attributed by stereocomplex formation by blends. Thermal and rheological data supported higher mechanical strength and an increase in melting and crystallization temperature adequately.  相似文献   

7.
The linear poly(L-lactide) and poly(D-lactide) (PLLA, PDLA) with relative lower molecular weights were synthesized, and PLLA/PDLA blends at various content of PDLA were prepared by solution casting. The morphology and growth of poly(lactide) stereocomplex (PLA SC) were investigated by polarized optical microscope. Results revealed that the morphology of SC in the blends strongly depended on the content of PDLA and the annealing temperature. Dendritic and irregular SC with looser structure developed in the specimens with lower content of PDLA, and regular SC spherulites with birefringent and compact structure produced in the specimens with higher content of PDLA. The growth rate (G) of SC increased gradually as the content of PDLA enhanced in the blends. As the annealing temperature enhanced, the SC with brighter and more compact structure appeared. The G value increased at first before declining as the annealing temperature elevated from the 130 to 190°C. And the nonlinear behavior of the growth of SC in the dissimilar specimens was analyzed.  相似文献   

8.
The blends of poly(1,3‐trimethylene carbonate‐b‐(l ‐lactide‐ran‐glycolide)) (PTLG) with poly(d ‐lactide) (PDLA) were prepared via solution‐casting method using CH2Cl2 as solvent. The poly(l ‐lactide) (PLLA) segments of PTLG with PDLA chain constructed as stereocomplex structures and growth stereocomplex crystals of PLA (sc‐PLA). The effects of sc‐PLA crystals on thermal behavior, mechanical properties, thermal decomposition of the PTLG/PDLA blends were investigated, respectively. The differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD) results showed that the total crystallinity of the PTLG/PDLA blends was increased with the PDLA content increasing. Heterogeneous nucleation of sc‐PLA crystals induced crystallization of the PLLA segments in PTLG. The crystallization temperature of samples shifted to 107.5°C for the PTLG/PDLA‐20 blends compared with that of the PTLG matrix, and decreased the half‐time of crystallization. The mechanical measurement results indicated that the tensile strength of the PTLG/PDLA blends was improved from 21.1 MPa of the PTLG matrix to 39.5 MPa of PTLG/PDLA‐20 blends. The results of kinetics of thermal decomposition of the PTLG/PDLA blends by TGA showed that the apparent activation energy of the PTLG/PDLA blends was increased from 59.1 to 72.1 kJ/mol with the increasing of the PDLA content from 3 wt% to 20 wt%, which indicated the enhancement of thermal stability of the PTLG/PDLA blends by addition of PDLA. Furthermore, the biocompatibility of the PTLG/PDLA blends cultured with human adipose‐derived stem cells was evaluated by CCK‐8 and live/dead staining. The experiment results proved the PTLG/PDLA blends were a kind of biomaterial with excellent physical performances with very low cytotoxicity.  相似文献   

9.
Stereoblock poly(lactic acid) (sb-PLA), consisting of poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA) in a blocky sequence, can successfully be synthesized by solid-state polycondensation of a stereocomplexed mixture of PLLA and PDLA. First, the melt polyconden-sation of L- and D-lactic acids is conducted to obtain PLLA and PDLA with medium molecular weights. Then, both polymers are melt-blended to easily form the stereocomplex. The resulting stereocomplexed mixture (melt-blend) is subjected to solid-state polycondensation for chain extension. The molecular weight (Mw) of the resultant sb-PLA is strongly affected by the lactide/oligomer content in the melt-blend, which is determined by the melt-blending conditions, because it is directly correlated with the polymer crystallinity of the polycondensation products.  相似文献   

10.
In this communication, we reported the sequence variation of stereocomplex crystals (SC) and homocrystals (HC) in poly(l ‐lactic acid)/poly(d ‐lactic acid) (PLLA/PDLA) racemic blends melts. It was evidenced that the emerging sequence of the SC and HC depends on the hydrogen bond formation in the melt, and the hydrogen bond is required for the stereocomplexation in PLLA/PDLA racemic blend. First, by combining a commercial fast‐scan chip‐calorimeter (Flash DSC 1) and micro‐FTIR, we found that hydrogen bonds were formed in the melt during cooling at 2.5 K/s, but not at 3000 K/s. Second, annealing the melt without hydrogen bonds at 100 °C led to HC emerging first, while annealing the melt with hydrogen bonds resulted in SC emerging at first. Third, the crystallization kinetics of the racemic blends after cooling to predefined Tc at 2.5 or 3000 K/s further verified that the hydrogen bonding can be inhibited effectively by cooling the racemic blends isotropic melt at fast enough rate. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 83–88  相似文献   

11.
Novel poly(l ‐lactide) (PLLA)/poly(d ‐lactide) (PDLA)/poly(tetrahydrofuran) (PTHF) multiblock copolymers with designed molecular structure were synthesized by a two‐stage procedure. Well‐defined PDLA‐PLLA‐PTHF‐PLLA‐PDLA pentablock copolymers were prepared by sequential ring opening polymerization of l ‐ and d ‐lactides starting from PTHF glycol, with the length of the (equimolar) PLLA and PDLA blocks being varied. Then, these dihydroxyl‐terminated pentamers were transformed into multiblock copolymers by melt chain‐extension with hexamethylene diisocyanate–being the first time that the coupling of pentablock units is reported. The successful formation of macromolecular chains with a multiblock and well‐defined architecture was demonstrated by 1H NMR spectroscopy. The thermal properties and structuring of the resulting materials were investigated by means of DSC and WAXD measurements and DMA analysis. Stereocomplexation was found to be promoted during solution and melt crystallization. This approach affords materials combining the high rigidity and strength (other than improved thermal resistance) of the hard stereocomplex crystallites with the flexibility imparted by the soft block, whereby their properties can be finely tailored through the composition of the basic pentablock units without limitations on the final molecular weight. The adopted reaction conditions make this process highly appealing in view of the possibility to perform it in extruder. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3269–3282  相似文献   

12.
The plasticization of stereocomplex polylactide (scPLA) with poly(propylene glycol) (PPG) is described. The poly(L-lactide) (PLLA), poly(D-lactide) (PDLA) and PPG were completely blended in chloroform before film casting to prepare scPLA/PPG blend films. The PLLA/PDLA ratio was fixed at 50/50 (w/w). The PPG blending enhanced the stereocomplex formation of the scPLA films. The stereocomplex crystallinities of the scPLA films increased as the PPG blend ratio increased, the PPG molecular weight decreased and the PDLA molecular weight decreased. The PPG blending significantly decreased the T g and film transparency, and improved the elongation at break of the scPLA films. The results indicated that the PPG blending had an effect on the stereocomplexation and it improved the flexibility of the scPLA films.  相似文献   

13.
The superb heat resistance poly(lactic acid) (PLA) were prepared by blending PLA and poly(d ‐lactic acid) (PDLA) with various molecular weight (Mn). Formation of the stereocomplex in the blends was confirmed by differential scanning calorimetry and wide‐angle X‐ray diffraction. The results of the heat resistance implied it is possible that elevating the Vicat penetration temperature of PLA up to 150°C by blending with PDLA. The cold crystallization of homochiral crystallites is proven to be the critical factor affecting the heat resistance of PLA. While the PLA or PLA/PDLA blends were heated to cold crystallization temperature of samples, both the crystal content and the rigid amorphous region content are increased due to the cold crystallization and tethering effect, and the stiffness and heat resistance of the sample are improved. The cold crystallization homochiral crystallites kinetics of PLA and PLA/PDLA blends was also studied. The results showed the activation energy (?E) of cold crystallization increased from 120.30 kJ/mol to 144.66 kJ/mol with the increasing of PDLA content from 2% to 10%.  相似文献   

14.
《先进技术聚合物》2018,29(1):632-640
The nanocompsites of star‐shaped poly(D‐lactide)‐co‐poly(L‐lactide) stereoblock copolymers (s‐PDLA‐PLLA) with two‐dimensional graphene nanosheets (GNSs) were prepared by solution mixing method. Crystallization behaviors were investigated using differential scanning calorimetry, polarized optical microscopy, and wide angle X‐ray diffraction. The results of isothermal crystallization behaviors of the nanocompsites clearly indicated that the GNS could remarkably accelerate the overall crystallization rate of s‐PDLA‐PLLA copolymer. Unique stereocomplex crystallites with melting temperature about 207.0°C formed in isothermal crystallization for all samples. The crystallization temperatures of s‐PDLA‐PLLAs shifted to higher temperatures, and the crystallization peak shapes became sharper with increasing GNS contents. The maximum crystallization temperature of the sample with 3 wt% GNS was about 128.2°C, ie, 15°C higher than pure s‐PDLA‐PLLA. At isothermal crystallization processes, the halftime of crystallization (t0.5) of the sample with 3 wt% GNS decreased to 6.4 minutes from 12.9 minutes of pure s‐PDLA‐PLLA at 160°C.The Avrami exponent n values for the nanocomposites samples were 2.6 to 3.0 indicating the crystallization mechanism with three‐dimensional heterogeneous nucleation and spherulites growth. The morphology and average diameter of spherulites of s‐PDLA‐PLLA with various GNS contents were observed in isothermal crystallization processes by polarized optical microscopy. Spherulite growth rates of samples were evaluated by using combined isothermal and nonisothermal procedures and analyzed by the secondary nucleation theory. The results evidenced that the GNS has acceleration effects on the crystallization of s‐PDLA‐PLLA with good nucleation ability in the s‐PDLA‐PLLA material.  相似文献   

15.
以等比例的聚L乳酸(PLLA)和聚D乳酸(PDLA)树脂为原料,先通过低温共混制备聚乳酸全立构粉末,然后将立构粉末与成核剂、玻璃纤维等混合,直接在注塑机中成型,注塑样品经热处理后,得到高耐热性能聚乳酸(PLA)样品,经测试,其维卡软化温度高达165 ℃以上,差示扫描量热分析(DSC)结果表明,处理后的样品富含立构物结晶,立构物结晶熔融焓高达27.6 J/g。 拉伸强度较纯PLA也有大幅提升,达到129 MPa。  相似文献   

16.
Poly(l-lactide) (PLLA)/poly(d-lactide) (PDLA) blend specimens containing only stereocomplex as crystalline species, together with those of pure PLLA and PDLA specimens, were prepared by solution crystallization using acetonitrile as the solvent. Their accelerated hydrolytic degradation was carried out in phosphate-buffered solution at elevated temperatures of 70-97 °C up to the late stage. During hydrolytic degradation, the stereocomplex crystalline residues were first traced by gel permeation chromatography. Similar to the hydrolytic degradation of pure PLLA and PDLA specimens, the hydrolytic degradation of stereocomplexed PLLA/PDLA blend specimens slowed down at the late stage when most of the amorphous chains were removed and crystalline resides were formed and degraded. The estimated activation energy for hydrolytic degradation of stereocomplex crystalline residues (97.3 kJ mol−1) is significantly higher than 75.2 kJ mol−1 reported for α-form of PLLA crystalline residues. This indicates that the stereocomplex crystalline residues showed the higher hydrolysis resistance compared to that of α-form of PLLA crystalline residues.  相似文献   

17.
Random and block copolymerizations of L ‐ or D ‐lactide with ε‐caprolactone (CL) were performed with a novel anionic initiator, (C5Me5)2SmMe(THF), and they resulted in partial epimerization, generating D ,L ‐ or meso‐lactide polymers with enhanced biodegradability. A blend of PLLA‐r‐PCL [82/18; PLLA = poly(L ‐LA) and PCL = poly(ε‐caprolactone)] and PDLA‐r‐PCL [79/21; PDLA = poly(D ‐LA)] prepared by the solution‐casting method generated a stereocomplex, the melting temperature of which was about 40 °C higher than that of the nonblended copolymers. A blend of PLLA‐b‐PCL (85/15) and PDLA‐b‐PCL (82/18) showed a lower elongation at break and a remarkably higher tensile modulus than stereocomplexes of PLLA‐r‐PCL/PDLA‐r‐PCL and PLLA/PDLA. The biodegradability of a blend of PLLA‐r‐PCL (65/35) and PDLA‐r‐PCL (66/34) with proteinase K was higher than that of PLLA‐b‐PCL (47/53) and PDLA‐b‐PCL (45/55), the degradability of which was higher than that of a PLLA/PDLA blend. A blend film of PLLA‐r‐PDLLA (69/31)/PDLA‐r‐PDLLA (68/32) exhibited higher degradability than a film of PLLA/PDLLA [PDLLA = poly(D ,L ‐LA)]. A stereocomplex of PLLA‐r‐PCL‐r‐PDMO [80/18/2; PDMO = poly(L ‐3,D ,L ‐6‐dimethyl‐2,5‐morpholinedion)] with PDLA‐r‐PCL‐r‐PDMO (81/17/2) showed higher degradability than PLLA‐r‐PDMO (98/2)/PDLA‐r‐PDMO (98/2) and PLLA‐r‐PCL (82/18)/PDLA‐r‐PCL (79/21) blends. The tensile modulus of a blend of PLLA‐r‐PCL‐r‐PDMO and PDLA‐r‐PCL‐r‐PDMO was much higher than that of a blend of PLLA‐r‐PDMO and PDLA‐r‐PDMO. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 438–454, 2005  相似文献   

18.
Stereocomplex-type polylactide (SC-PLA) consisting of alternatively arranged poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) chains has gained a good reputation as a sustainable engineering plastic with outstanding heat resistance and durability,however its practical applications have been considerably hindered by the weak SC crystallizability.Current methods used to enhance the SC crystallizability are generally achieved at the expense of the precious bio-renewability and/or bio-degradability of PLAs.Herein,we demonstrate a feasible method to address these challenges by incorporating small amounts of poly(D,L-lactide) (PDLLA) into linear high-molecular-weight PLLA/PDLA blends.The results show that the incorporation of the atactic PDLLA leads to a significant enhancement in the SC crystallizability because its good miscibility with the isotactic PLAs makes it possible to greatly improve the chain mixing between PLLA and PDLA as an effective compatibilizer.Meanwhile,the melt stability (i.e.,the stability of PLLA/PDLA chain assemblies upon melting) could also be improved substantially.Very intriguingly,SC crystallites are predominantly formed with increasing content and molecular weight of PDLLA.More notably,exclusive SC crystallization can be obtained in the racemic blends with 20 wt% PDLLA having weight-average molecular weight of above 1 ×10s g/mol,where the chain mixing level and intermolecular interactions between the PLA enantiomers could be strikingly enhanced.Overall,our work could not only open a promising horizon for the development of all SC-PLA-based engineering plastic with exceptional SC crystallizability but also give a fundamental insight into the crucial role of PDLLA in improving the SC crystallizability of PLLA/PDLA blends.  相似文献   

19.
Poly(L‐lactide) (PLLA) composites with TiO2‐g‐poly(D‐lactide) (PDLA), which was synthesized by surface‐initiated opening ring polymerization with TiO2 as initiator and Sn(Oct)2 as catalyst, were prepared by solution casting. The synthesized TiO2‐g‐PDLA was characterized by transmission electron microscope (TEM) and dynamic laser scattering (DLS), showing larger size corresponding to that of TiO2. Fourier transform infrared spectroscopy (FT‐IR) and X‐ray photoelectron spectroscopy (XPS) measurements were further carried out and indicated that PDLA was grafted onto TiO2 through covalent bond. For PLLA/TiO2‐g‐PDLA composites, the stereocomplex crystallites were formed between PDLA grafted on the surface of TiO2 and the PLLA matrix, which was determined by FT‐IR, differential scanning calorimetry (DSC), and X‐ray diffractometer (XRD). The influence of stereocomplex crystallites on the rheological behavior of PLLA/TiO2‐g‐PDLA was investigated by rheometer, which showed greater improvement of rheological properties compared to that of PLLA/TiO2 composites especially with a percolation content of TiO2‐g‐PDLA between 3 wt%–5 wt%. The crystallization and melting behavior of PLLA/TiO2‐g‐PDLA composites were studied by DSC under different thermal treatment conditions. The formed PLA stereocomplex network acted as nucleating agents and a special interphase on the functional surface of TiO2, which resulted in imperfect PLLA crystal with lower melting temperature. When the thermal treatment was close to the melting temperature of PLA stereocomplex, the crystallinity approached to the maximum. The isothermal crystallization study by polarizing microscope (POM) indicated that stereocomplex network presented stronger nucleation capacity than TiO2‐g‐PDLA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Melt blending of poly(l ‐lactide) (PLLA) and water‐soluble polymers was carried out through reactive melt processing with the objective to prepare water‐dispersible PLLA‐based materials. For this purpose, both polyvinyl alcohol (PVOH) and hydroxyethyl cellulose (HEC) were considered. Prior to melt blending, the preparation of plasticized PVOH and plasticized HEC was performed. The so‐obtained blends have been characterized in terms of morphology and thermomechanical properties. The morphological analysis evidenced the possibility to prepare co‐continuous PLLA/plasticized HEC blends. Nevertheless, their low melt strength did not allow producing monofilaments by melt spinning. Thus, PVOH was considered as an alternative to HEC. The results showed that using maleic anhydride‐grafted polylactide as a compatibilizer for PLLA/plasticized PVOH 40/60 (w/w) blends allowed preparing co‐continuous blends leading to tough monofilaments with high ultimate elongation. Moreover, the assessment of the water dispersiveness revealed that the monofilaments readily swelled in water and started to break up after 30 min. A full fragmentation of the monofilaments was observed within 1 hr. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号