首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ellagic acid is a natural polyphenol found in various fruits and vegetables. Numerous studies have shown that ellagic acid has beneficial effects on human health. In this study, we investigated the stress resistant action of ellagic acid in Caenorhabditis elegans (C. elegans). Notably, 50 μM ellagic acid prolonged the lifespan of C. elegans by 36.25%, 36.22%, 155.1%, and 79.07% under ultraviolet radiation stress, heat stress, oxidative stress, and Pseudomonas aeruginosa infection stress, respectively. Furthermore, the mechanism by which ellagic acid reduces the damage caused by ultraviolet radiation in C. elegans was explored. Ellagic acid could significantly induce the nucleus translocation of DAF-16 and, thereby, activate a series of target genes to resist ultraviolet radiation stress. Moreover, ellagic acid also significantly increased the expression of SOD-3 by 3.61 times and the activity of superoxide dismutase by 3.70 times to clean out harmful reactive oxygen species in C. elegans exposed to ultraviolet radiation stress. In both daf-16 mutant and daf-2; daf-16 double-mutant worms exposed to ultraviolet radiation, ellagic acid could no longer prolong their lifespan. These results indicate that ellagic acid plays an important role in resisting ultraviolet radiation stress in C. elegans, probably in an insulin/IGF-1 signaling pathway-dependent way.  相似文献   

2.
A natural extract from Paecilomyces variotii (P. variotii extract, PVE), an endophytic fungus, has been used widely to improve agricultural crop performance and control multiple plant pathogens. Most recent studies focused on its application as a plant growth promoter, while relatively few studies have been reported on the antioxidant potential in vivo and the underlying mechanism. The present study was designed to determine the antioxidant activities of PVE and its mechanisms using Caenorhabditis elegans. Results showed that, compared to the solvent control, PVE at 1.0, 10 and 100 ng/mL significantly extended the lifespan of C. elegans by 36.60%, 59.80% and 53.30%, respectively. PVE at 10 ng/mL consistently promoted nematodes growth, but all treatments did not influence nematode fecundity, locomotion behavior, and pharyngeal pumping. Furthermore, PVE at the three tested concentrations significantly reduced accumulation of reactive oxygen species (ROS), lipofuscin, lipid and malondialdehyde (MDA) content, meanwhile significantly promoted activities of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) in the nematodes. Compared with the solvent control, PVE up-regulated gene expression of skn-1, mev-1, sod-3, and daf-2, but significantly down-regulated the expression of nhr-49 and daf-16. Further evidence revealed that PVE at the three concentrations significantly promoted nuclear localization of SKN-1, but not affected that of DAF-16, indicating the complex roles of DAF-16 and SKN-1 in stress resistance and longevity regulation. Overall, our results demonstrated that SKN-1 played a critical role in increasing lifespan of C. elegans and protecting the nematodes from oxidative stress, independent of DAF-16.  相似文献   

3.
The aim of this study was to determine the influence of caffeic and caftaric acid, fructose, and storage temperature on the formation of furan-derived compounds during storage of base wines. Base wines produced from Chardonnay grapes were stored at 15 and 30 °C for 90 days with additions of fructose, caffeic acid, and caftaric acid independently or in combinations. Wines were analyzed following 90 days of storage for: total hydroxycinnamic acids, degree of browning, caffeic acid and caftaric acid concentrations, and nine furan-derived compounds. Caffeic and caftaric acid additions increased homofuraneol concentration by 31% and 39%, respectively, at 15 °C (p < 0.05). Only the addition of caffeic acid increased furfural by 15% at 15 °C (p < 0.05). Results demonstrate that some furan derivatives over 90 days at 15 °C increased slightly with 5 mg/L additions of caffeic and caftaric acid. This is the first time the influence of hydroxycinnamic acids on furan-derived compounds has been reported during short-term aging of base wine at cellar temperature.  相似文献   

4.
5.
Amber is a fossilized tree resin historically used in wound healing and stress relief. Unfortunately, there is no concrete scientific evidence supporting such efficacy. Here, the stress buffering and longevity effect of Amber extract (AE) in Caenorhabditis elegans (C. elegans) was investigated. Survival assays, health span assays, Enzyme-Linked Immunosorbent Assay (ELISA), Stress biomarker detection assays, Green Fluorescence Proteins (GFP), Real Time quantitative PCR (RT-qPCR) and C. elegans mutants were employed to investigate the stress buffering and longevity effect of AE. In the study, it was observed that AE supplementation improved health span and survival in both normal and stressed worms. Additionally, AE positively regulated stress hormones (cortisol, oxytocin, and dopamine) and decreased fat and reactive oxygen species (ROS) accumulation. Through the Insulin/IGF-1 signaling (IIS) pathway, AE enhanced the nuclear localization of DAF-16 and the expression of heat shock proteins and antioxidant genes in GFP-tagged worms and at messenger RNA levels. Finally, AE failed to increase the survival of daf-16, daf-2, skn-1 and hsf-1 loss-of-function mutants, confirming the involvement of the IIS pathway. Evidently, AE supplementation relieves stress and enhances longevity. Thus, amber may be a potent nutraceutical for stress relief.  相似文献   

6.
7.
We developed a new one-pot reaction of phenolic acids to afford the corresponding esters and amides through acyl-protected and activated phenolic acid intermediates. The simultaneous protection/activation of phenolic acids with alkylchloroformates proceeded readily in the presence of DMAP at room temperature; subsequent addition of alcohols or amines afforded the corresponding esters or amides. The use of iso-butyloxycarbonyl as the protecting and activating group in the one-pot reactions afforded phenolic esters or amides in 91% average yield. As a practical example of this convenient synthesis, caffeic acid phenethyl ester (CAPE) was readily synthesized from commercially available caffeic acid and phenethyl alcohol in 95% yield, and an isotopomer of CAPE, [3,10-13C2]CAPE, was synthesized in 91% yield from [3-13C]caffeic acid and 2-[1-13C]phenethyl alcohol. This method may be useful for the convenient esterification and amidation of diverse phenolic acids.  相似文献   

8.
Potentiometric titration and IR and UV spectroscopies are used to study complexation of caffeic and ferulic acids by metal ions. Caffeic and ferulic acids, which occur in lignin, are shown to react with metal ions mainly through an ionic mechanism. However, coordination bonding is also possible depending on the nature of the ligand and metal ion and the ratio of starting components. The strongest complex forms between caffeic acid and CuCl 2 (2:1 ratio)  相似文献   

9.
Two biosensors based on Trametes versicolor laccase (TvL) were developed for the determination of phenolic compounds. Commercial oxygen electrode and ferrocene-modified screen-printed graphite electrodes were used for preparation of laccase biosensors. The systems were calibrated for three phenolic acids. Linearity was obtained in the concentration range 0.1-1.0 μM caffeic acid, 0.05-0.2 μM ferulic acid, 2.0-14.0 μM syringic acid for laccase immobilised on a commercial oxygen electrode and 2.0-30.0 μM caffeic acid, 2.0-10.0 μM ferulic acid, 4.0-30.0 μM syringic acid for laccase immobilised on ferrocene-modified screen-printed electrodes. Furthermore, optimal pH, temperature and thermal stability studies were performed with the commercial oxygen electrode. Both electrodes were used for determination of a class of phenolic acids, achieving a cheap and fast tool and an easy to be used procedure for screening real samples of human plasma.  相似文献   

10.
Terminalia leiocarpa is a medicinal plant widely used in ethnoveterinary medicine to treat digestive parasitosis whose extracts were shown to be active against gastrointestinal nematodes of domestic ruminants. The objective of our study was to identify compounds responsible for this activity. Column fractionation was performed, and the activity of the fractions was assessed in vitro on Haemonchus contortus and Caenorhabditis elegans as well as their cytotoxicity on WI38 fibroblasts. Two fractions were the most active on both nematode models and less cytotoxic. LC-MS/MS analysis and manual dereplication coupled to molecular networking allowed identification of the main compounds: ellagic acid and derivatives, gallic acid, astragalin, rutin, quinic acid, and fructose. Other potentially identified compounds such as shikimic acid, 2,3-(S)-hexahydroxydiphenoyl-D-glucose or an isomer, quercetin-3-O-(6-O-galloyl)-β-D-galactopyranoside or an isomer, and a trihydroxylated triterpenoid bearing a sugar as rosamultin are reported in this plant for the first time. Evaluation of the anthelmintic activity of the available major compounds showed that ellagic and gallic acids were the most effective in inhibiting the viability of C. elegans. Their quantification in fractions 8 and 9 indicated the presence of about 8.6 and 7.1 µg/mg ellagic acid and about 9.6 and 2.0 µg/mg gallic acid respectively. These concentrations are not sufficient to justify the activity observed. Ellagic acid derivatives and other compounds that were found to be positively correlated with the anthelmintic activity of the fractions may have additive or synergistic effects when combined, but other unidentified compounds could also be implicated in the observed activity.  相似文献   

11.
Caffeic acid, a natural phenol with antioxidant and sunscreen activity, can undergo photooxidation upon UV irradiation. The photodegradation of caffeic acid at different concentrations was assessed in water, at pH 4.0 and 6.0, without and with TiO2. The study was then carried out on W/O/W emulsions entrapping the phenolic acid either in the inner or in the outer aqueous phase in the absence and in the presence of TiO2, added in the external phase (pH 6.0 or 7.0). The degradation of caffeic acid followed a pseudo-zero order kinetic with an inverse dependence from its initial concentration; at increasing pH of the medium caffeic acid degraded faster. The addition of TiO2 increased the initial photodegradation rate. Compared with water, W/O/W emulsions protected the phenol towards both the photodegradation and the photocatalytic activity of TiO2. Multiple systems allowed to incorporate caffeic acid and TiO2 in the same formulation avoiding any catalytic interactions.  相似文献   

12.
Alpha-amylase (α-amylase) is a key player in the management of diabetes and its related complications. This study was intended to have an insight into the binding of caffeic acid and coumaric acid with α-amylase and analyze the effect of these compounds on the formation of advanced glycation end-products (AGEs). Fluorescence quenching studies suggested that both the compounds showed an appreciable binding affinity towards α-amylase. The evaluation of thermodynamic parameters (ΔH and ΔS) suggested that the α-amylase-caffeic/coumaric acid complex formation is driven by van der Waals force and hydrogen bonding, and thus complexation process is seemingly specific. Moreover, glycation and oxidation studies were also performed to explore the multitarget to manage diabetes complications. Caffeic and coumaric acid both inhibited fructosamine content and AGE fluorescence, suggesting their role in the inhibition of early and advanced glycation end-products (AGEs). However, the glycation inhibitory potential of caffeic acid was more in comparison to p-coumaric acid. This high antiglycative potential can be attributed to its additional –OH group and high antioxidant activity. There was a significant recovery of 84.5% in free thiol groups in the presence of caffeic acid, while coumaric attenuated the slow recovery of 29.4% of thiol groups. In vitro studies were further entrenched by in silico studies. Molecular docking studies revealed that caffeic acid formed six hydrogen bonds (Trp 59, Gln 63, Arg 195, Arg 195, Asp 197 and Asp 197) while coumaric acid formed four H-bonds with Trp 59, Gln 63, Arg 195 and Asp 300. Our studies highlighted the role of hydrogen bonding, and the ligands such as caffeic or coumaric acid could be exploited to design antidiabetic drugs.  相似文献   

13.
Hydroxytyrosol (HY) deriving from olive leaves is a phenolic component which has been proven to possess a strong antioxidant ability. However, the underling mechanism is still unclear. To evaluate the antioxidant ability of HY comprehensively, assays in vitro and in vivo (Caenorhabditis elegans (C. elegans) was used as a model organism) were conducted. The results showed HY could scavenge 2,2-Diphenyl-1-picryl-hydrazyl (DPPH) radicals with a strong total reducing power. Pretreated with HY for 48 h, the cell viability of Chinese hamster ovary (CHO) cells was enhanced under oxidative stress by reducing the level of reactive oxygen species (ROS) and malondialdehyde (MDA). A suitable concentration of HY showed no side effects on the development, fertility, and movement of C. elegans. With the treatment of HY, the survival was enhanced by 15.79% under thermal stress. The ROS and MDA contents were also reduced, which might be associated with the increasing abilities of antioxidant enzymes such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and the heat shock protein HSP-16.2. Nuclear localization of DAF-16 was greatly increased after treated with HY. More outcomes demonstrated HY exhibited an excellent antioxidant capacity via the insulin signaling pathway by upregulating daf-16 and sod-3 and downregulating the genes of age-1 and daf-2.  相似文献   

14.
Caffeic acid and related natural compounds were previously described as Leishmania amazonensis arginase (L-ARG) inhibitors, and against the whole parasite in vitro. In this study, we tested cinnamides that were previously synthesized to target human arginase. The compound caffeic acid phenethyl amide (CAPA), a weak inhibitor of human arginase (IC50 = 60.3 ± 7.8 μM) was found to have 9-fold more potency against L-ARG (IC50 = 6.9 ± 0.7 μM). The other compounds that did not inhibit human arginase were characterized as L-ARG, showing an IC50 between 1.3–17.8 μM, and where the most active was compound 15 (IC50 = 1.3 ± 0.1 μM). All compounds were also tested against L. amazonensis promastigotes, and only the compound CAPA showed an inhibitory activity (IC50 = 80 μM). In addition, in an attempt to gain an insight into the mechanism of competitive L-ARG inhibitors, and their selectivity over mammalian enzymes, we performed an extensive computational investigation, to provide the basis for the selective inhibition of L-ARG for this series of compounds. In conclusion, our results indicated that the compounds based on cinnamoyl or 3,4-hydroxy cinnamoyl moiety could be a promising starting point for the design of potential antileishmanial drugs based on selective L-ARG inhibitors.  相似文献   

15.
Dihydrocaffeic acid C9H10O4 is a natural antioxidant. The crystal structure of dihydrocaffeic acid is determined; the crystallographic data at 100 K are: a = 11.3189(4) Å, b = 5.5824(1) Å, c = 13.8431(4) Å, β = 109.248(4)°, and V = 825.80(4) Å3; the space group is P21/c, Z = 4. In addition to the formation of hydrogen bonds that are typical of acids, the compound has features that are important from the viewpoint of reactivity of dihydrocaffeic acid molecules. The position of one of the hydroxyl hydrogen atoms in the catechol group is disordered even at 100 K. The crystal structure of caffeic acid does not show such a disordering.  相似文献   

16.
The Dendrobium officinale flower is a non-medicinal part of the plant, rich in a variety of nutrients and bioactive ingredients. The purpose of this article was to explore the preparation conditions of anthocyanins (ACNs) from the D. officinale flower. Subsequently, its anti-aging effects were evaluated with Caenorhabditis elegans. Results showed that the ACNs had antioxidant activities on scavenging free radicals (DPPH· and ABTS+·), and the clearance rate was positively correlated with the dose. Additionally, ACNs significantly increased the activity of superoxide dismutase (SOD) in C. elegans, which was 2.068-fold higher than that of the control. Treatment with ACNs at 150 μL extended the lifespan of C. elegans by 56.25%, and treatment with ACNs at 50 μL promoted fecundity in C. elegans. Finally, the protective effect of ACNs enhanced stress resistance, thereby increasing the survival numbers of C. elegans, which provided insights for the development and practical application of functional products.  相似文献   

17.
UV-B and IR-A radiation are important inducers of biological changes in skin involving ROS generation. The overloading of antioxidant defense mechanisms by ROS production could lead to photoaging and photocarcinogenesis processes. Various traditional usages are reported for Aralia nudicaulis L. extracts, including treatment of dermatological disorders. Antioxidant and anti-inflammatory properties have already been reported for other Aralia species possibly due to the presence of phenolic compounds. However, the phenolic composition and the potential activity of A. nudicaulis rhizomes extract against oxidative stress and UV/IR damages have not been investigated. The main aims of this study were to prepare a fraction enriched in phenolic compounds (FEPC) from A. nudicaulis rhizomes, to identify its major phenolic compounds and to assess its potential for protective effects against oxidative stress induced by UV-B, IR-A or inflammation. A quantitative LC-MS study of FEPC shows that chlorogenic, caffeic and protocatechuic acids are the main phenolic compounds present, with concentrations of 15.6%, 15.3% and 4.8% of the total composition, respectively. With a validated analytical method, those compounds were quantified over different stages of the growing period. As for biological potential, first this extract demonstrates antioxidant and anti-inflammatory activities. Furthermore, ROS generation induced by IR-A and UV-B were strongly inhibited by A. nudicaulis extract, suggesting that Aralia nudicaulis L. rhizome extract could protect dermal cells against oxidative stress induced by UV-B and IR-A.  相似文献   

18.
Balsamic vinegar is one of the best known and most popular types of vinegar, and it is a rich source of polyphenolic compounds. The quality of balsamic vinegar as well as the content of phenolic substances vary depending on the production method. In the present work, we have developed a method for comprehensive characterization of the content of phenolic compounds in balsamic vinegars based on the combination of gas chromatography (GC) and high-performance liquid chromatography (HPLC) coupled with mass spectrometric detection in single mode (MS) and tandem mode (MS/MS). In total, 14 samples of different types of balsamic vinegar were analyzed without difficulty in sample preparation. The separation conditions and detection parameters of HPLC-MS/MS were optimized and used for the determination of 29 phenolic compounds and 6 phenolic acids. The profile of phenolic compounds was completed by semi-quantitative analysis of volatile organic compounds using GC-MS after optimized headspace solid-phase microextraction. Gallic acid, protocatechuic acid, caffeic acid, and p-coumaric acid have been identified as the major phenolic compounds in balsamic vinegars.  相似文献   

19.
Aging, a universal and unique process, occurs both intrinsically (chronological) and extrinsically (photoaging). Ultraviolet-A (UV-A)-mediated stress is a growing health hazard to mankind as it is the major cause of photoaging, which could lead to much damage of skin cells and tissues ranging from tan, burn, or even cancer. The present study focuses on the role of antioxidants and other natural compounds which have been widely used in oral/topical applications to combat and delay the effects of photoaging using model nematode Caenorhabditis elegans. Compounds like green tea extract, naringenin, and naringin, which are known for their antioxidant properties, were able to extend life span and healthspan of the nematode in normal as well as under UV-A-mediated stress conditions. Regulation of both the stress-responsive genes (skn-1 and sir-2.1) and the aging-regulating genes (daf-2 and age-1) was attributable for these conditions. Interestingly, it was observed that these compounds when combined in equal ratios by weight worked synergistically to combat the aging process. Pronounced synergistic effects were observed during UV-A-mediated stress conditions, suggesting that these could be used as potential antiphotoaging compounds which will be of greater significance for health-based research.  相似文献   

20.
A simple, sensitive and accurate method for the simultaneous separation and determination of apigenin and four phenolic acids including chlorogenic acid, caffeic acid, p-coumaric acid and ferulic acid in four dried flowers by high performance liquid chromatography with electrochemical detection (ECD) and diode array detection (DAD) has been established. The detection limits of caffeic acid, p-coumaric acid and ferulic acid obtained with ECD were 3, 1 and 4 ng mL?1, and LOD of apigenin and chlorogenic acid obtained with DAD were 1 × 10?2 and 6 × 10?2 μg mL?1. The detection and quantification limits of three phenolic compounds obtained with ECD were two to ninefold greater than those obtained with DAD. As electrochemically inactive compounds, apigenin and chlorogenic acid were detected by DAD. All calibration curves showed good linearity (r ≥ 0.9992) within the test ranges. The recoveries ranged from 95.3 to 101.4% (RSD ≤ 2.9%). This approach could provide scientific evidence for comprehensive evaluation about the effect of the medicine and ensure nutrient status of dried flowers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号