首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effect of Lorentz force on particle transport and deposition is studied by using direct numerical simulation of turbulent channel flow of electrically conducting fluids combined with discrete particle simulation of the trajectories of uncharged, spherical particles. The magnetohydrodynamic equations for fluid flows at low magnetic Reynolds numbers are adopted. The particle motion is determined by the drag, added mass, and pressure gradient forces. Results are obtained for flows with particle ensembles of various densities and diameters in the presence of streamwise, wall-normal or spanwise magnetic fields. It is found that the particle dispersion in the wall-normal and spanwise directions is decreased due to the changes of the underlying fluid turbulence by the Lorentz force, while it is increased in the streamwise direction. The particle accumulation in the near-wall region is diminished in the magnetohydrodynamic flows. In addition, the tendency of small inertia particles to concentrate preferentially in the low-speed streaks near the walls is strengthened with increasing Hartmann number. The particle transport by turbophoretic drift and turbulent diffusion is damped by the magnetic field and, consequently, particle deposition is reduced.  相似文献   

2.
DNS of turbulent flow and passive scalar transport in a channel are conducted for the situation when the fluid is electrically conducting (for example, a liquid metal) and the flow is affected by an imposed magnetic field. The cases of wall-normal, spanwise, and streamwise orientation of the magnetic field are considered. As main results, we find that the magnetic fields, especially those in the wall-normal and spanwise directions, significantly reduce the turbulent scalar transport and modify the properties of the scalar distribution.  相似文献   

3.
Interaction between turbulence and particles is investigated in a channel flow. The fluid motion is calculated using direct numerical simulation (DNS) with a lattice Boltzmann (LB) method, and particles are tracked in a Lagrangian framework through the action of force imposed by the fluid. The particle diameter is smaller than the Kolmogorov length scale, and the point force is used to represent the feedback force of particles on the turbulence. The effects of particles on the turbulence and skin friction coefficient are examined with different particle inertias and mass loadings. Inertial particles suppress intensities of the spanwise and wall-normal components of velocity, and the Reynolds shear stress. It is also found that, relative to the reference particle-free flow, the overall mean skin-friction coefficient is reduced by particles. Changes of near wall turbulent structures such as longer and more regular streamwise low-speed streaks and less ejections and sweeps are the manifestation of drag reduction.  相似文献   

4.
A synthetic turbulence generation (STG) method for subsonic and supersonic flows at low and moderate Reynolds numbers to provide inflow distributions of zonal Reynolds-averaged Navier–Stokes (RANS) – large-eddy simulation (LES) methods is presented. The STG method splits the LES inflow region into three planes where a local velocity signal is decomposed from the turbulent flow properties of the upstream RANS solution. Based on the wall-normal position and the local flow Reynolds number, specific length and velocity scales with different vorticity content are imposed at the inlet plane of the boundary layer. The quality of the STG method for incompressible and compressible zero-pressure gradient boundary layers is shown by comparing the zonal RANS–LES data with pure LES, pure RANS, and direct numerical simulation (DNS) solutions. The distributions of the time and spanwise wall-shear stress, Reynolds stress distributions, and two point correlations of the zonal RANS–LES simulations are smooth in the transition region and in good agreement with the pure LES and reference DNS findings. The STG approach reduces the RANS-to-LES transition length to less than four boundary-layer thicknesses.  相似文献   

5.
We consider a plane channel flow of an electrically conducting fluid which is driven by a mean pressure gradient in the presence of an applied magnetic field that is streamwise periodic with zero mean. Magnetic flux expulsion and the associated bifurcation in such a configuration are explored using direct numerical simulations (DNS). The structure of the flow and magnetic fields in the Hartmann regime (where the dominant balance is through Lorentz forces) and the Poiseuille regime (where viscous effects play a significant role) are studied, and detailed comparisons to the existing one-dimensional model of Kamkar and Moffatt (J Fluid Mech 90:107–122, 1982) are drawn to evaluate the validity of the model. Comparisons show good agreement of the model with DNS in the Hartmann regime, but significant differences arising in the Poiseuille regime when nonlinear effects become important. The effects of various parameters like the magnetic Reynolds number, imposed field wavenumber etc. on the bifurcation of the flow are studied. Magnetic field line reconnections occurring during the dynamic runaway reveal a specific two-step pattern that leads to the gradual expulsion of flux in the core region.  相似文献   

6.
The mechanisms of laminarization in wall-bounded flows have been investigated by performing direct numerical simulations (DNS) of turbulent channel flows. By decreasing Reynolds numbers systematically, the effects of the low Reynolds number are studied in connection with the near-wall turbulent structure and turbulent statistics. At approximately the critical Reynolds number, the turbulent skin friction is reduced, and the turbulent structure changes qualitatively in the very near-wall region. Instantaneous turbulent structures reveal that streamwise vortices, the cores of which are at y+ 10, disappear, although low speed streaks and Reynolds shear stress are still produced by larger streamwise vortices located in the buffer region y+ > 10. Sweep motions induced by these vortical structures are shifted toward the center of a channel and also significantly deterred, which may heighten the effects of the viscous sublayer over most of the channel section and suppress the regeneration mechanisms of new streamwise vortices in the very near-wall region. To investigate the details of how large-scale coherent vortices affect the viscous sublayer and the relevant small-scale streamwise vortices, a body force is virtually imposed in the wall-normal direction to enhance the large streamwise vortices. As a result, it is found that when they are sufficiently enhanced, the small-scale vortices reappear, and the sweep events are again dominant in the viscous sublayer.  相似文献   

7.
Eccentric annular pipe flows represent an ideal model for investigating inhomogeneous turbulent shear flows, where conditions of turbulence production and transport vary significantly within the cross-section. Moreover recent works have proven that in geometries characterized by the presence of a narrow gap, large-scale coherent structures are present. The eccentric annular channel represents, in the opinion of the present authors, the prototype of these geometries. The aim of the present work is to verify the capability of a numerical methodology to fully reproduce the main features of the flow field in this geometry, to verify and characterize the presence of large-scale coherent structures, to examine their behavior at different Reynolds numbers and eccentricities and to analyze the anisotropy associated to these structures. The numerical approach is based upon LES, boundary fitted coordinates and a fractional step algorithm. A dynamic Sub Grid Scale (SGS) model suited for this numerical environment has been implemented and tested. An additional interest of this work is therefore in the approach employed itself, considering it as a step into the development of an effective LES methodology for flows in complex channel geometries. Agreement with previous experimental and DNS results has been found good overall for the streamwise velocity, shear stress and the rms of the velocity components. The instantaneous flow field presented large-scale coherent structures in the streamwise direction at low Reynolds numbers, while these are absent or less dominant at higher Reynolds and low eccentricity. After Reynolds averaging is performed over a long integration time the existence of secondary flows in the cross session is proven. Their shape is found to be constant over the Reynolds range surveyed, and dependent on the geometric parameters. The effect of secondary flows on anisotropy is studied over an extensive Reynolds range through invariant analysis. Additional insight on the mechanics of turbulence in this geometry is obtained.  相似文献   

8.
Many recent laboratory experiments and numerical simulations support a non-equilibrium dissipation scaling in decaying turbulence before it reaches an equilibrium state.By analyzing a direct numerical simulation(DNS)database of a transitional boundary-layer flow,we show that the transition region and the non-equilibrium turbulence region,which are located in different streamwise zones,present different non-equilibrium scalings.Moreover,in the wall-normal direction,the viscous sublayer,log layer,and outer layer show different non-equilibrium phenomena which differ from those in grid-generated turbulence and transitional channel flows.These findings are expected to shed light on the modelling of various types of non-equilibrium turbulent flows.  相似文献   

9.
郝乐  陈龙  倪明玖 《力学学报》2020,52(6):1645-1654
绕流是托卡马克装置中液态包层内常见的流动形态,对流场与热量分布有着重要的影响.本文通过直接数值模拟(DNS),研究了不同磁场强度下$Re=3900$的圆柱绕流,分析了磁场强度对于湍流尾迹的影响.无磁场情况下,直接数值模拟的结果与前人的实验及模拟结果吻合很好.圆柱下游的尾迹中,随着流向距离的增大, 流向速度剖面逐渐从U型进化呈V型, 并慢慢趋于平缓,这表明尾迹中的流动结构受圆柱影响逐渐减小.圆柱后方两侧的剪切层中,由于Kelvin-Helmholtz不稳定性的影响,可以清晰地看到小尺度剪切层涡的脱落.通过对无磁场的计算结果施加流向磁场,本文计算了哈特曼数($Ha$)分别为20, 40和80的工况,以研究磁场效应对于湍流的影响.结果表明磁场较弱时,流动依然呈三维湍流状态.随着磁场增强, 近圆柱尾流区受磁场抑制明显,回流区被拉长,剪切层失稳位置向下游转移.圆柱后方的涡结构由于受到竖直方向洛伦兹力的挤压作用,随着哈特曼数的增加尾迹区域逐渐变窄.相比于无磁场情况的涡结构,由于磁场的耗散作用,相应的涡结构尺度变小.该研究不仅扩展了现有磁场下湍流运动的参数范围,对于液态包层的设计及安全运行同样具有重要的理论指导意义和工程应用价值.   相似文献   

10.
绕流是托卡马克装置中液态包层内常见的流动形态,对流场与热量分布有着重要的影响.本文通过直接数值模拟(DNS),研究了不同磁场强度下$Re=3900$的圆柱绕流,分析了磁场强度对于湍流尾迹的影响.无磁场情况下,直接数值模拟的结果与前人的实验及模拟结果吻合很好.圆柱下游的尾迹中,随着流向距离的增大, 流向速度剖面逐渐从U型进化呈V型, 并慢慢趋于平缓,这表明尾迹中的流动结构受圆柱影响逐渐减小.圆柱后方两侧的剪切层中,由于Kelvin-Helmholtz不稳定性的影响,可以清晰地看到小尺度剪切层涡的脱落.通过对无磁场的计算结果施加流向磁场,本文计算了哈特曼数($Ha$)分别为20, 40和80的工况,以研究磁场效应对于湍流的影响.结果表明磁场较弱时,流动依然呈三维湍流状态.随着磁场增强, 近圆柱尾流区受磁场抑制明显,回流区被拉长,剪切层失稳位置向下游转移.圆柱后方的涡结构由于受到竖直方向洛伦兹力的挤压作用,随着哈特曼数的增加尾迹区域逐渐变窄.相比于无磁场情况的涡结构,由于磁场的耗散作用,相应的涡结构尺度变小.该研究不仅扩展了现有磁场下湍流运动的参数范围,对于液态包层的设计及安全运行同样具有重要的理论指导意义和工程应用价值.  相似文献   

11.
This experimental study investigated the turbulent transport dissimilarity with a modulated turbulence structure in a channel flow of a viscoelastic fluid using simultaneous particle image velocimetry and planar laser-induced fluorescence measurements. An instantaneous dye concentration field with fluctuating velocity vectors showed that mass was transferred by hierarchically large-scale wavy motions with inclination. A co-spectral analysis showed that the spatial phase modulation of the streamwise velocity and dye concentration fluctuations for the wall-normal velocity fluctuation corresponded to the relaxation time. The occurrence of intense dye concentration fluctuation and small streamwise velocity fluctuation in a thin boundary layer caused dissimilar turbulent transport because of the non-zero negative correlation of the streamwise velocity and dye concentration fluctuations for the wall-normal velocity fluctuation only on large scales. This explains the turbulent transport dissimilarity which leads to the zero averaged Reynolds shear stress and non-zero wall-normal turbulent mass flux.  相似文献   

12.
章光华  符松 《力学学报》2000,32(2):141-150
基于对可压缩湍流中脉动压力场和脉动速度场特征的理论分析以及DNS结果,建立了可均匀剪切湍流中压力-变形率关联的压缩性修正模式,应用这个模式,加上Sarkar等建立的脉动体胀率项(dilatational terms)的模式,预测可压缩均匀剪切湍流随时间的发展,所得雷诺应力各是性张量的平衡值与Blaisdell等的DNS数据非常一致。这个模式准确地预测出均匀剪切湍流中压缩性导致的雷诺应力结构的“流向  相似文献   

13.
It is known from smoke visualizations that in a transitional boundary layer subjected to free-stream turbulence, streaks appear and eventually break down to turbulence after wavy motions. In order to observe the streaky structures directly, a stereo particle-tracking velocimetry system using hydrogen bubbles in a water channel has been developed and validated against laser Doppler velocimetry. Mean flow statistics show good agreement with previous results. With the developed measurement system, the instantaneous spanwise distribution of the streamwise and wall-normal velocities can be measured fast enough to resolve the time development of the streaky structures. Measurements of instantaneous spanwise distributions of the streamwise and wall-normal velocity disturbances show strong negative correlation between the wall-normal and streamwise velocities in the streaks. Published online: 19 November 2002  相似文献   

14.
This paper presents results of a large eddy simulation (LES) combined with Lagrangian particle tracking and a point-force approximation for the feedback effect of particles on the downward turbulent gaseous flow in a vertical channel. The LES predictions are compared with the results obtained by direct numerical simulation (DNS) of a finer computational mesh. A parametric study is conducted for particles with two response times in simulations with and without streamwise gravitational settling and elastic, binary interparticle collisions. It is shown that the classical and the dynamic Smagorinsky turbulence models adequately predict the particle-induced changes in the mean streamwise velocity and the Reynolds stresses of the carrier phase for the range of parameters studied. However, the largest discrepancies between the LES and DNS results are found in the cases of particle-laden flows. Conditional sampling of the instantaneous resolved flow fields indicates that the mechanisms by which particles directly oppose the production of momentum and vorticity of the organized fluid motions are also observed in the LES results. However, the geometric features of the near-wall quasistreamwise vortices are overestimated by the use of both turbulence models compared to the DNS predictions.  相似文献   

15.
A new approach to sensitize turbulence closures based on the linear eddy-viscosity hypothesis to rotational effects is proposed. The principal idea is to ‘mimic' the behavior of a second moment closure (SMC) in rotating homogeneous shear flow; depending on the ratio of the mean flow to the imposed rotational time scales, the model should be able to bifurcate between two stable equilibrium solutions. These solutions correspond to exponential or algebraic time dependent growth or decay of turbulent kinetic energy. This fundamental behavior of SMCs is believed to be of importance also in the prediction of non-equilibrium turbulence. A near-wall turbulence model which is based on the linear eddy-viscosity hypothesis is modified in the present study. Wall proximity effects are modeled by the elliptic relaxation approach. This closure has been successfully applied in the computation of complex, non-equilibrium flows in inertial frames of reference. The objective of the present study is to extend the predictive capability of the model to include flows dominated by rotational effects. The new model is calibrated in rotating homogeneous turbulent shear flow and subsequently tested in three different cases characterized by profound effects of system rotation or streamline curvature. It is able to capture many of the effects due to imposed body forces that the original closure is incapable of. Good agreement is obtained between the present predictions and available experimental and DNS data.  相似文献   

16.
An experimental study was carried out to investigate the effect of local ultrasonic forcing on a turbulent boundary layer. The ultrasonic forcing system was constructed by adhering six ultrasonic transducers to a flat plate over which water was flowed. In this system, the ultrasonic waves projected into the water by the transducers caused cavitation, giving rise to an enormous number of tiny water-vapor bubbles. Stereoscopic particle image velocimetry (SPIV) was used to probe the flow characteristics. The SPIV results showed that imposition of the ultrasonic forcing caused a substantial increase in the mean wall-normal velocity but a decrease in the mean streamwise velocity. The ultrasonic forcing reduced the skin friction coefficient by up to 60% immediately downstream of the transducers; this effect gradually dissipated with moving downstream. The streamwise turbulence intensity was reduced near the wall but increased away from the wall, whereas the wall-normal turbulence intensity was not much affected near the wall but increased away from the wall. The Reynolds shear stress and the production of turbulent kinetic energy were reduced near the wall. Imposition of the ultrasonic forcing shifted the streamwise vortical structures away from the wall, leading to a reduction in skin friction.  相似文献   

17.
The topology of large scale structures in a turbulent boundary layer is investigated numerically. Spatial characteristics of the large scale structure are presented through an original method, proper orthogonal decomposition (POD) of the three-dimensional vorticity fields. The DNS results, obtained by Tiselj et al. [23] for a fully developed turbulent flow in a flume, are used in the present work to analyze coherent structures with the proposed methodology. In contrast to the reconstruction methods that use instantaneous flow quantities, this approach utilizes the whole dataset of the numerical simulation. The analysis uses one thousand 3D vorticity fields from 50000 time steps of the simulation for the Reynolds number of 2600 (the turbulent Reynolds number Re*=171). The computational domain is 2146×171×537 wall units and the grid resolution is 128×65×72 points (in streamwise, wall-normal and spanwise directions, respectively). Experimental results obtained by using particle image velocimetry (PIV) in a fully developed turbulent boundary layer in a flume, which were analyzed with the same statistical characterization method, are in agreement with the DNS analysis: the dominant vortical structure appears to have a longitudinal streamwise orientation, an inclination angle of about 8°, streamwise length of several hundred wall units, and a distance between the neighboring structures of about 100 wall units in the spanwise direction. PACS 47.27.Nz, 47.54+r  相似文献   

18.
DNS data for channel flow, subjected to spanwise (in-plane) wall oscillations at a friction Reynolds number of 1025, are used to examine the turbulence interactions that cause the observed substantial reduction in drag provoked by the forcing. Following a review of pertinent interactions between the forcing-induced unsteady Stokes strain and the Reynolds stresses, identified in previous work by the present authors, attention is focused on the equations governing the components of the enstrophy, with particular emphasis placed on the wall-normal and the spanwise components. The specific objective is to study the mechanisms by which the Stokes strain modifies the enstrophy field, and thus the turbulent stresses. As such, the present analysis sheds fresh light on the drag-reduction processes, illuminating the interactions from a different perspective than that analysed in previous work. The investigation focuses on the periodic rise and fall in the drag and phase-averaged properties during the actuation cycle at sub-optimal actuation conditions, in which case the drag oscillates by around ±2% around the time-averaged 20% drag-reduction margin. The results bring out the important role played by specific strain-related production terms in the enstrophy-component equations, and also identifies vortex tilting/stretching in regions of high skewness as being responsible for the observed strong increase in the spanwise enstrophy components during the drag-reduction phase. Simultaneously, the wall-normal enstrophy component, closely associated with near-wall streak intensity, diminishes, mainly as a result of a reduction in a production term that involves the correlation between wall-normal vorticity fluctuations and the spanwise derivative of wall-normal-velocity fluctuations, which pre-multiplies the streamwise shear strain.  相似文献   

19.
This study deals with the electromagnetic damping of free-convective flows in cavities such as those used in the crystal growth horizontal Bridgman configuration. The cavities are filled with a dilute electrically conducting alloy and are subjected to a horizontal temperature gradient. The flow is steady and laminar under an external, vertical, transversal and uniform magnetic field. Several cross sections of the cavities were investigated and can either be centro-symmetric or not. The governing equations for such problems are two coupled partial differential equations, for the velocity and the induced magnetic fields, coupled with a third integral equation for mass conservation. A finite element method has been developed, and the numerical results for the variation of the velocity and the induced magnetic field in terms of the Hartmann number show a considerable decrease in convection intensity as the Hartmann number increases. Results also reveal the presence of the well-known Hartmann and parallel layers. For non-centro-symmetric sections, results show the way the flow reorganises into two cells as the Hartmann number increases.  相似文献   

20.
The direct numerical simulation(DNS) is carried out for the incompressible viscous turbulent flows over an anisotropic porous wall. Effects of the anisotropic porous wall on turbulence modifications as well as on the turbulent drag reduction are investigated. The simulation is carried out at a friction Reynolds number of 180, which is based on the averaged friction velocity at the interface between the porous medium and the clear fluid domain. The depth of the porous layer ranges from 0.9 to 54 viscous units. The permeability in the spanwise direction is set to be lower than the other directions in the present simulation. The maximum drag reduction obtained is about 15.3% which occurs for a depth of 9 viscous units. The increasing of drag is addressed when the depth of the porous layer is more than 25 wall units. The thinner porous layer restricts the spanwise extension of the streamwise vortices which suppresses the bursting events near the wall. However, for the thicker porous layer, the wall-normal fluctuations are enhanced due to the weakening of the wall-blocking effect which can trigger strong turbulent structures near the wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号