首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activation of yellow arsenic is possible with the silylene [PhC(NtBu)2SiN(SiMe3)2] ( 1 ) and the disilene [(Me3Si)2N(η1-Me5C5)Si=Si(η1-Me5C5)N(SiMe3)2] ( 3 ). The reaction of As4 with 1 leads to the unprecedented As10 cage compound [(LSiN(SiMe3)2)3As10] ( 2 ; L=PhC(NtBu)2) with an As7 nortricyclane core stabilized by arsasilene moieties containing silicon(II)bis(trimethylsilyl)amide substituents. In contrast, the compound [Cp*{(SiMe3)2N}SiAs]2 ( 4 ) containing a butterfly-like diarsadisilabicyclo[1.1.0]butane unit is formed by the reaction of As4 with the disilene 3 . Both compounds were characterized by single-crystal X-ray diffraction analysis, NMR spectroscopy, and mass spectrometry. The reaction outcomes demonstrate the different reaction behavior of yellow arsenic (As4) compared to white phosphorus (P4) in the reactions with the corresponding silylenes and disilenes.  相似文献   

2.
The synthesis, structural, and photophysical investigations of CuI complexes with a disilanylene-bridged bispyridine ligand 1 are herein presented. Dinuclear (2) and ladder-like (3) octanuclear copper(I) complexes were straightforwardly prepared by exactly controlling the ratio of CuI/ligand 1. Single-crystal X-ray analysis confirmed that dinuclear complex 2 had no apparent π…π stacking whereas octanuclear complex 3 had π…π stacking in the crystal packing. In the solid state, the complexes display yellow-green (λem = 519 nm, Φ = 0.60, τ = 11 µs, 2) and blue (λem = 478 nm, Φ = 0.04, τ = 2.6 µs, 3) phosphorescence, respectively. The density functional theory calculations validate the differences in their optical properties. The difference in the luminescence efficiency between 2 and 3 is attributed to the presence of π…π stacking and the different luminescence processes.  相似文献   

3.
In 1996, we reported that silyl groups of 9,10-disilylanthracenes significantly affect the UV/Vis and fluorescence spectra. Although the results indicate that the silyl groups have strong electronic effects on anthracene, the details of the mechanisms responsible for this have not yet been clarified. This article describes the analysis of the UV/Vis and fluorescence spectra of 9,10-bis(diisopropylsilyl)anthracene by theoretical calculations. This study reveals that π conjugation of anthracene is extended by cooperation of σ–π and σ*–π* conjugation between the silyl groups and anthracene. This effect increases the transition moment of the π–π* transition of anthracene. As a result, the molecular extinction coefficient of the 1La band and the fluorescence quantum yield are increased.  相似文献   

4.
MP2/aug-cc-pVTZ calculations were carried out on complexes wherein the proton or the lithium cation is located between π-electron systems, or between π-electron and σ-electron units. The acetylene or its fluorine and lithium derivatives act as the Lewis base π-electron species similarly to molecular hydrogen, which acts as the electron donor via its σ-electrons. These complexes may be classified as linked by π-H∙∙∙π/σ hydrogen bonds and π-Li∙∙∙π/σ lithium bonds. The properties of these interactions are discussed, and particularly the Lewis acid units are analyzed, because multi-center π-H or π-Li covalent bonds may occur in these systems. Various theoretical approaches were applied here to analyze the above-mentioned interactions—the Quantum Theory of Atoms in Molecules (QTAIM), the Symmetry-Adapted Perturbation Theory (SAPT) and the Non-Covalent Interaction (NCI) method.  相似文献   

5.
The synthesis of mechanically interlocked molecules is valuable due to their unique topologies. With π-stacking intercomponent interaction, e.g., phenanthroline and anthracene, novel [2]rotaxanes have been synthesized by dynamic imine clipping reaction. Their X-ray crystal structures indicate the π-stackings between the anthracene moiety (stopper) on the thread and the (hetero)aromatic rings at the macrocycle of the rotaxanes. Moreover, the length of glycol chains affects the extra π-stacking intercomponent interactions between the phenyl groups and the dimethoxy phenyl groups on the thread. Dynamic combinatorial library has shown at best 84% distribution of anthracene-threaded phenanthroline-based rotaxane, coinciding with the crystallography in that the additional π-stacking intercomponent interactions could increase the thermodynamic stability and selectivity of the rotaxanes.  相似文献   

6.
π–π stacking interaction is well-known to be one of the weak interactions. Its importance in the stabilization of protein structures and functionalization has been reported for various systems. We have focused on a single copper oxidase, galactose oxidase, which has the π–π stacking interaction of the alkylthio-substituted phenoxyl radical with the indole ring of the proximal tryptophan residue and catalyzes primary alcohol oxidation to give the corresponding aldehyde. This stacking interaction has been considered to stabilize the alkylthio-phenoxyl radical, but further details of the interaction are still unclear. In this review, we discuss the effect of the π–π stacking interaction of the alkylthio-substituted phenoxyl radical with an indole ring.  相似文献   

7.
The influence of non-covalent σ–π orbital interactions on triplet–triplet energy transfer (TTET) through tuning of the donor excitation energy remains basically unexplored. In the present work, we have investigated intermolecular TTET using donor moieties covalently linked to a rigid cholesterol (Ch) scaffold. For this purpose, diaryl ketones of π,π* electronic configuration tethered to α- or β-Ch were prepared from tiaprofenic acid (TPA) and suprofen (SUP). The obtained systems TPA-α-Ch, TPA-β-Ch, SUP-α-Ch and SUP-β-Ch were submitted to photophysical studies (laser flash photolysis and phosphorescence), in order to delineate the influence of steric shielding and σ–π orbital interactions on the rate of TTET to a series of energy acceptors. As a matter of fact, fine tuning of the donor triplet energy significantly modifies the rate constants of TTET in the absence of diffusion control. The experimental results are rationalized by means of theoretical calculations using first principles methods based on DFT as well as molecular dynamics.  相似文献   

8.
Using 2-hydroxypropyl-protecting groups, 1,8-dialkynylanthracene photo-dimers were prepared in head-to-head-configuration by UV irradiation on a multi-gram scale. In non-polar solvents, the combination of non-covalent hydrogen bonds and π–π-interactions induces the formation of the syn-isomer in up to 85% yield. Instead, more polar solvents or irradiation of unprotected 1,8-diethynylanthracene led to formation of the corresponding anti-isomer in large excess. Cleavage of the protecting groups under basic conditions affords a rigid hydrocarbon skeleton with four directional functions. This was used as a building block for a tetradentate boron Lewis acid. Its applicability as a host for Lewis-base substrates was demonstrated by the formation of adducts with various nitrogen bases. Adduct formation with hydrazine leads to impressive networks between the tetraboron host and the substrate molecules.

Preorganised by hydrogen bonds and π-stacking, 2-hydroxypropylalkyne-protected 1,8-alkynylanthracene photo-dimerises preferably in head-to-head configuration; the resulting rigid organic frameworks can be converted into tetradentate boron Lewis acids.  相似文献   

9.
In order to improve pharmaceutical properties of drugs, complexes are synthesized as combinations with other chemical substances. The complexes of fenamic acid and its derivatives, such as mefenamic-, tolfenamic- and flufenamic acid, with acridine were obtained and the X-ray structures were discussed. Formation of the crystals is determined by the presence of the intermolecular O–HN hydrogen bond that occur between fenamic acids and acridine. Intermolecular interactions stabilizing the crystals such as ππ stacking, C–HX (X = O, Cl) intermolecular hydrogen bonds as well as C–Hπ and other dispersive interactions were analyzed by theoretical methods: the quantum theory of atoms in molecules (QTAIM) and noncovalent interaction (NCI) approaches.  相似文献   

10.
The endiandric acids are classic targets in natural product synthesis. The spectacular 8π/6π-electrocylisation/intramolecular Diels–Alder (8π/6π/IMDA) reaction cascade at the heart of their biosynthesis has inspired practitioners and students of pericyclic chemistry for nearly forty years. All previous synthetic approaches have sought to prepare a linear tetraene and thereby initiate the cascade. In this communication we demonstrate the use of cyclooctatetraene to rapidly intercept the 8π/6π/IMDA cascade at the cyclooctatriene stage. Endiandric acid J and beilcyclone A are prepared for the first time in six and five steps, respectively. The strategy features a tactical overall anti-vicinal difunctionalisation of cyclooctatetraene through SN2′ alkylation of cyclooctatetraene oxide followed by an intriguing tandem Claisen rearrangement/6π-electrocyclisation from the corresponding vinyl ether. This rapidly constructs an advanced bicyclo[4.2.0]octadiene aldehyde intermediate. Olefinations and intramolecular Diels–Alder cycloadditions complete the syntheses. This establishes a short and efficient new path to the endiandric acid natural products. DFT modelling predicts thermal racemisation of bicyclo[4.2.0]octadiene intermediates, dashing hopes of enantioselective synthesis.

A new strategy to the endiandric acid natural products is demonstrated by intercepting the 8π/6π/IMDA pericyclic cascade through a tactical anti-vicinal difunctionalisation of cyclooctatetraene.  相似文献   

11.
The dual XH (OH and CH) hydrogen-bond-donating property of 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) and the strong dual XH–π interaction with arenes were firstly disclosed by theoretical studies. Here, the high accuracy post-Hartree–Fock methods, CCSD(T)/CBS, reveal the interaction energy of HFIP/benzene complex (−7.22 kcal/mol) and the contribution of the electronic correlation energy in the total interaction energy. Strong orbital interaction between HFIP and benzene was found by using the DFT method in this work to disclose the dual XH–π intermolecular orbital interaction of HFIP with benzene-forming bonding and antibonding orbitals resulting from the orbital symmetry of HFIP. The density of states and charge decomposition analyses were used to investigate the orbital interactions. Isopropanol (IP), an analogue of HFIP, and chloroform (CHCl3) were studied to compare them with the classical OH–π, and non-classical CH–π interactions. In addition, the influence of the aggregating effect of HFIP, and the numbers of substituted methyl groups in benzene rings were also studied. The interaction energies of HFIP with the selected 24 common organic compounds were calculated to understand the role of HFIP as solvent or additive in organic transformation in a more detailed manner. A single-crystal X-ray diffraction study of hexafluoroisopropyl benzoate further disclosed and confirmed that the CH of HFIP shows the non-classical hydrogen-bond-donating behavior.  相似文献   

12.
Nitroaromatics seldom fluoresce. The importance of electron-deficient (n-type) conjugates, however, has inspired a number of strategies for suppressing the emission-quenching effects of the strongly electron-withdrawing nitro group. Here, we demonstrate how such strategies yield fluorescent nitroaryl derivatives of dipyrrolonaphthyridinedione (DPND). Nitro groups near the DPND core quench its fluorescence. Conversely, nitro groups placed farther from the core allow some of the highest fluorescence quantum yields ever recorded for nitroaromatics. This strategy of preventing the known processes that compete with photoemission, however, leads to the emergence of unprecedented alternative mechanisms for fluorescence quenching, involving transitions to dark nπ* singlet states and aborted photochemistry. Forming nπ* triplet states from ππ* singlets is a classical pathway for fluorescence quenching. In nitro-DPNDs, however, these ππ* and nπ* excited states are both singlets, and they are common for nitroaryl conjugates. Understanding the excited-state dynamics of such nitroaromatics is crucial for designing strongly fluorescent electron-deficient conjugates.

Dipyrrolonaphthyridinedione appended with para- or meta-nitrophenyl substituents exhibits strong fluorescence from a 1ππ* S1 state.  相似文献   

13.
In this study, charged π-electronic species are observed to develop stacking structures based on electrostatic and dispersion forces. iπ–iπ Interaction, defined herein, functions for the stacking structures consisting of charged π-electronic species and is in contrast to conventional π–π interaction, which mainly exhibits dispersion force, for electronically neutral π-electronic species. Establishing the concept of iπ–iπ interaction requires the evaluation of interionic interactions for π-electronic ion pairs. Free base (metal-free) and diamagnetic metal complexes of 5-hydroxy-10,15,20-tris(pentafluorophenyl)porphyrin were synthesized, producing π-electronic anions upon the deprotonation of the hydroxy unit. Coexisting cations in the ion pairs with porphyrin anions were introduced as the counter species of the hydroxy anion as a base for commercially available cations and as ion-exchanged species, via Na+ in the intermediate ion pairs, for synthesized π-electronic cations. Solid-state ion-pairing assemblies were constructed for the porphyrin anions in combination with aliphatic tetrabutylammonium (TBA+) and π-electronic 4,8,12-tripropyl-4,8,12-triazatriangulenium (TATA+) cations. The ordered arrangements of charged species, with the contributions of the charge-by-charge and charge-segregated modes, were observed according to the constituent charged building units. The energy decomposition analysis (EDA) of single-crystal packing structures revealed that electrostatic and dispersion forces are important factors in stabilizing the stacking of π-electronic ions. Furthermore, crystal-state absorption spectra of the ion pairs were correlated with the assembling modes. Transient absorption spectroscopy of the single crystals revealed the occurrence of photoinduced electron transfer from the π-electronic anion in the charge-segregated mode.

π-Electronic ion pairs comprising porphyrin-based π-electronic anions have exhibited characteristic assembling modes and resulting electronic properties such as solid-state absorption and photoinduced electron transfer.  相似文献   

14.
The aim of this study is to describe and compare the supramolecular interactions, in the solid state, of chloro-, bromo-, and iodobenzothiophene diols. The compounds were obtained through organo-catalyzed reactions starting from 3-substituted halobenzothiophene carbaldehydes. Energies of the noncovalent interactions were obtained by density functional theory calculations. Bond distances and angles were found to be in accordance with those determined by X-ray structure analysis. anti-Bromobenzothiophene derivatives showed strong halogen⋅⋅⋅π interactions between bromine and the heterocyclic phenyl ring, corresponding to an energy of 7.5 kcal mol−1. syn-Bromo and syn-iodo derivatives appeared to be isostructural, showing X⋅⋅⋅O (carbonyl) interactions, π stacking, and formation of extended hydrogen bonding networks. In contrast, the chloro derivatives displayed no halogen bonding interactions.  相似文献   

15.
16.
Noncovalent π stacking of aromatic molecules is a universal form of noncovalent interactions normally occurring on planar structures (such as aromatic molecules and graphene) based on sp2-hybridized atoms. Here we reveal a new type of noncovalent surface–π stacking unusually occurring between aromatic groups and peroxide-modified titania (PMT) nanosheets, which can drive versatile aromatic adsorptions. We experimentally explore the underlying electronic-level origin by probing the perturbed changes of unoccupied Ti 3d states with near-edge X-ray absorption fine structures (NEXAFS), and find that aromatic groups can vertically attract π electrons in the surface peroxo-Ti states and increase their delocalization regions. Our discovery updates the concept of noncovalent π-stacking interactions by extending the substrates from carbon-based structures to a transition metal oxide, and presents an approach to exploit the surface chemistry of nanomaterials based on noncovalent interactions.

A new type of noncovalent surface–π stacking interaction occurring on a transition metal oxide, titania, is reported, which is different from the traditional forms on sp2-hybridized planar structures like graphene.  相似文献   

17.
Structures of three tetrahalophthalic anhydrides (TXPA: halogen = Cl (TCPA), Br (TBPA), I (TIPA)) were studied by X-ray diffraction, and several types of halogen bonds (HaB) and lone pair···π-hole (lp···πh) contacts were revealed in their structures. HaBs involving the central oxygen atom of anhydride group (further X···O(anhydride) were recognized in the structures of TCPA and TBPA. In contrast, for the O(anhydride) atom of TIPA, only interactions with the π system (π-hole) of the anhydride ring (further lp(O)···πh) were observed. Computational studies by a number of theoretical methods (molecular electrostatic potentials, the quantum theory of atoms in molecules, the independent gradient model, natural bond orbital analyses, the electron density difference, and symmetry-adapted perturbation theory) demonstrated that the X···O(anhydride) contacts in TCPA and TBPA and lp(O)···πh in TIPA are caused by the packing effect. The supramolecular architecture of isostructural TCPA and TBPA was mainly affected by X···O(acyl) and X···X HaBs, and, for TIPA, the main contribution provided I···I HaBs.  相似文献   

18.
Abundant n → π* interactions between adjacent backbone carbonyl groups, identified by statistical analysis of protein structures, are predicted to play an important role in dictating the structure of proteins. However, experimentally testing the prediction in proteins has been challenging due to the weak nature of this interaction. By amplifying the strength of the n → π* interaction via amino acid substitution and thioamide incorporation at a solvent exposed β-turn within the GB1 proteins and Pin 1 WW domain, we demonstrate that an n → π* interaction increases the structural stability of proteins by restricting the ϕ torsion angle. Our results also suggest that amino acid side-chain identity and its rotameric conformation play an important and decisive role in dictating the strength of an n → π* interaction.

Amino acid residues adopt a right-handed α-helical conformation with increasing strength of the n → π* interaction. We also demonstrate a direct consequence of n → π* interactions on enhancing the structural stability of proteins.  相似文献   

19.
The equilibrium between disilenes (R2Si=SiR2) and their silylsilylene (R3Si?SiR) isomers has previously been inferred but not directly observed, except in the case of the parent system H2Si=SiH2. Here, we report a new method to prepare base‐coordinated disilenes with hydride substituents. By varying the bulk of the coordinating base and other silicon substituents, we have been able to control the rearrangement of disilene adducts to their silylsilylene tautomers. Remarkably, 1,2 migration of a trimethylsilyl group is preferred over hydrogen migration. A DFT study of the reaction mechanism provides a rationale for the observed reactivity and detailed information on the bonding situation in base‐stabilized disilenes.  相似文献   

20.
Sulfonamides are widely used antibiotics in agricultural production. However, the potential threat of these drugs to human health has increased global concern. Human serum albumin (HSA) is the main reservoir and transporter of exogenous small molecules in humans. In this study, the interaction between sulfadimethoxine (SMT) and human serum albumin (HSA) was studied using spectroscopy and computer simulation. Our results showed that the hydrogen bonding and van der Waals forces drove SMT to enter the binding site I of HSA spontaneously and resulted in the fluorescence quenching of HSA. The stability of the HSA–SMT complex decreased with an increase in temperature. The binding of SMT to HSA induced alterations in the secondary structure of HSA, where the content of α-helix decreased from 61.0% of the free state to 59.0% of the compound state. The π–π, π–σ, and π–alkyl interactions between HSA and SMT were found to play important roles in maintaining the stability of the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号