首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we summarize some recent advances related to the energetic variational approach (EnVarA), a general variational framework of building thermodynamically consistent models for complex fluids, by some examples. Particular focus will be placed on how to model systems involving chemo-mechanical couplings and non-isothermal effects.  相似文献   

2.
The second law has been demonstrated in quantum thermodynamics. The behavior of entropy is discussed.  相似文献   

3.
Entropy-based methods have received considerable attention in the quantification of structural complexity of real-world systems. Among numerous empirical entropy algorithms, conditional entropy-based methods such as sample entropy, which are associated with amplitude distance calculation, are quite intuitive to interpret but require excessive data lengths for meaningful evaluation at large scales. To address this issue, we propose the variational embedding multiscale sample entropy (veMSE) method and conclusively demonstrate its ability to operate robustly, even with several times shorter data than the existing conditional entropy-based methods. The analysis reveals that veMSE also exhibits other desirable properties, such as the robustness to the variation in embedding dimension and noise resilience. For rigor, unlike the existing multivariate methods, the proposed veMSE assigns a different embedding dimension to every data channel, which makes its operation independent of channel permutation. The veMSE is tested on both stimulated and real world signals, and its performance is evaluated against the existing multivariate multiscale sample entropy methods. The proposed veMSE is also shown to exhibit computational advantages over the existing amplitude distance-based entropy methods.  相似文献   

4.
We consider the H-theorem in an isolated quantum harmonic oscillator through the time-dependent Schrödinger equation. The effect of potential in producing entropy is investigated in detail, and we found that including a barrier potential into a harmonic trap would lead to the thermalization of the system, while a harmonic trap alone would not thermalize the system. During thermalization, Shannon entropy increases, which shows that a microscopic quantum system still obeys the macroscopic thermodynamics law. Meanwhile, initial coherent mechanical energy transforms to incoherent thermal energy during thermalization, which exhibiting the decoherence of an oscillating wave packet featured by a large decreasing of autocorrelation length. When reaching thermal equilibrium, the wave packet comes to a halt, with the density distributions both in position and momentum spaces well-fitted by a microcanonical ensemble of statistical mechanics.  相似文献   

5.
This paper presents a new approach for denoising Partial Discharge (PD) signals using a hybrid algorithm combining the adaptive decomposition technique with Entropy measures and Group-Sparse Total Variation (GSTV). Initially, the Empirical Mode Decomposition (EMD) technique is applied to decompose a noisy sensor data into the Intrinsic Mode Functions (IMFs), Mutual Information (MI) analysis between IMFs is carried out to set the mode length K. Then, the Variational Mode Decomposition (VMD) technique decomposes a noisy sensor data into K number of Band Limited IMFs (BLIMFs). The BLIMFs are separated as noise, noise-dominant, and signal-dominant BLIMFs by calculating the MI between BLIMFs. Eventually, the noise BLIMFs are discarded from further processing, noise-dominant BLIMFs are denoised using GSTV, and the signal BLIMFs are added to reconstruct the output signal. The regularization parameter λ for GSTV is automatically selected based on the values of Dispersion Entropy of the noise-dominant BLIMFs. The effectiveness of the proposed denoising method is evaluated in terms of performance metrics such as Signal-to-Noise Ratio, Root Mean Square Error, and Correlation Coefficient, which are are compared to EMD variants, and the results demonstrated that the proposed approach is able to effectively denoise the synthetic Blocks, Bumps, Doppler, Heavy Sine, PD pulses and real PD signals.  相似文献   

6.
Quantum physics, despite its intrinsically probabilistic nature, lacks a definition of entropy fully accounting for the randomness of a quantum state. For example, von Neumann entropy quantifies only the incomplete specification of a quantum state and does not quantify the probabilistic distribution of its observables; it trivially vanishes for pure quantum states. We propose a quantum entropy that quantifies the randomness of a pure quantum state via a conjugate pair of observables/operators forming the quantum phase space. The entropy is dimensionless, it is a relativistic scalar, it is invariant under canonical transformations and under CPT transformations, and its minimum has been established by the entropic uncertainty principle. We expand the entropy to also include mixed states. We show that the entropy is monotonically increasing during a time evolution of coherent states under a Dirac Hamiltonian. However, in a mathematical scenario, when two fermions come closer to each other, each evolving as a coherent state, the total system’s entropy oscillates due to the increasing spatial entanglement. We hypothesize an entropy law governing physical systems whereby the entropy of a closed system never decreases, implying a time arrow for particle physics. We then explore the possibility that as the oscillations of the entropy must by the law be barred in quantum physics, potential entropy oscillations trigger annihilation and creation of particles.  相似文献   

7.
颗粒介质弹性的弛豫   总被引:1,自引:0,他引:1       下载免费PDF全文
孙其诚  刘传奇  周公旦 《物理学报》2015,64(23):236101-236101
颗粒介质是复杂的多体相互作用体系, 其弹性源自内部的力链结构, 弹性能量处在亚稳态, 具有复杂的弛豫行为. 在常规作用下, 颗粒介质往往呈现明显的弹性弛豫. 应力松弛是应变恒定时应力的衰减现象, 弹性弛豫是应力松弛的主要原因. 在前期工作基础上, 从弹性势能面和双颗粒温度热力学角度分析了弹性弛豫的机理, 量化了弹性应力演化不可逆过程; 基于双颗粒温度热力学计算得到了弹性能、颗粒温度和应力的演化, 其中应力松弛的计算结果与实验结果基本一致, 讨论了颗粒温度初值和输运系数的影响. 指出, 开展力链结构及其动力学研究是揭示宏观弹性弛豫机理的关键.  相似文献   

8.
Several expressions for quantum entropy proposed in the literature are evaluated within the Weyl—Wigner—Moyal phase-space representation of quantum mechanics, with emphasis on some important subtle points in this approach. It has been found that the Rényi—Süßmann entropy and its linearization are distinguished because of their properties.  相似文献   

9.
The complex and changeable marine environment surrounded by a variety of noise, including sounds of marine animals, industrial noise, traffic noise and the noise formed by molecular movement, not only interferes with the normal life of residents near the port, but also exerts a significant influence on feature extraction of ship-radiated noise (S-RN). In this paper, a novel feature extraction technique for S-RN signals based on optimized variational mode decomposition (OVMD), permutation entropy (PE), and normalized Spearman correlation coefficient (NSCC) is proposed. Firstly, with the mode number determined by reverse weighted permutation entropy (RWPE), OVMD decomposes the target signal into a set of intrinsic mode functions (IMFs). The PE of all the IMFs and SCC between each IMF with the raw signal are then calculated, respectively. Subsequently, feature parameters are extracted through the sum of PE weighted by NSCC for the IMFs. Lastly, the obtained feature vectors are input into the support vector machine multi-class classifier (SVM) to discriminate various types of ships. Experimental results indicate that five kinds of S-RN samples can be accurately identified with a recognition rate of 94% by the proposed scheme, which is higher than other previously published methods. Hence, the proposed method is more advantageous in practical applications.  相似文献   

10.
Entropy is a concept that emerged in the 19th century. It used to be associated with heat harnessed by a thermal machine to perform work during the Industrial Revolution. However, there was an unprecedented scientific revolution in the 20th century due to one of its most essential innovations, i.e., the information theory, which also encompasses the concept of entropy. Therefore, the following question is naturally raised: “what is the difference, if any, between concepts of entropy in each field of knowledge?” There are misconceptions, as there have been multiple attempts to conciliate the entropy of thermodynamics with that of information theory. Entropy is most commonly defined as “disorder”, although it is not a good analogy since “order” is a subjective human concept, and “disorder” cannot always be obtained from entropy. Therefore, this paper presents a historical background on the evolution of the term “entropy”, and provides mathematical evidence and logical arguments regarding its interconnection in various scientific areas, with the objective of providing a theoretical review and reference material for a broad audience.  相似文献   

11.
In this note, we first present a result concerning a variational principle for general Markov processes. Then we apply it to spin particle systems to obtain a full form of a variational principle characterizing the stationary Markov laws of the systems. A related extreme decomposition for any stationary distribution of such Markov systems is also given.  相似文献   

12.
Thermodynamic entropy is not an entirely satisfactory measure of information of a quantum state. This entropy for an unknown pure state is zero, although repeated measurements on copies of such a pure state do communicate information. In view of this, we propose a new measure for the informational entropy of a quantum state that includes information in the pure states and the thermodynamic entropy. The origin of information is explained in terms of an interplay between unitary and non-unitary evolution. Such complementarity is also at the basis of the so-called interaction-free measurement.  相似文献   

13.
A unified view on macroscopic thermodynamics and quantum transport is presented. Thermodynamic processes with an exchange of energy between two systems necessarily involve the flow of other balancable quantities. These flows are first analyzed using a simple drift-diffusion model, which includes the thermoelectric effects, and connects the various transport coefficients to certain thermodynamic susceptibilities and a diffusion coefficient. In the second part of the paper, the connection between macroscopic thermodynamics and quantum statistics is discussed. It is proposed to employ not particles, but elementary Fermi- or Bose-systems as the elementary building blocks of ideal quantum gases. In this way, the transport not only of particles but also of entropy can be derived in a concise way, and is illustrated both for ballistic quantum wires, and for diffusive conductors. In particular, the quantum interference of entropy flow is in close correspondence to that of electric current.  相似文献   

14.
Horizon Entropy     
Although the laws of thermodynamics are well established for black hole horizons, much less has been said in the literature to support the extension of these laws to more general settings such as an asymptotic de Sitter horizon or a Rindler horizon (the event horizon of an asymptotic uniformly accelerated observer). In the present paper we review the results that have been previously established and argue that the laws of black hole thermodynamics, as well as their underlying statistical mechanical content, extend quite generally to what we call here causal horizons. The root of this generalization is the local notion of horizon entropy density.  相似文献   

15.
A new entropy function s+ is defined in terms of the existing entropy function s° and temperature as s+ = s° − R lnT to facilitate the analysis of isentropic processes of ideal gases with variable specific heats. The function s+ also makes it possible to calculate the entropy changes of ideal gases during processes when volume information is available instead of pressure information and the variation of specific heats with temperature is to be accounted for. The introduction of the function s+ eliminates the need to use the dimensionless isentropic functions relative pressure Pr and relative specific volume vr of ideal gases and to tabulate their values. The Pr and vr data are often confused with pressure and specific volume, with an adverse effect on the study of the second law of thermodynamics. The new s+ function nicely complements the existing s° function in entropy change calculations: the former is conveniently used when volume information is given while the latter is used when pressure information is available. Therefore, the introduction of the new entropy function s+ is expected to make a significant contribution to the thermodynamics education and research by streamlining entropy analysis of ideal gases.  相似文献   

16.
17.
Quantum measurement processes of discrete andcontinuous observables are considered from theinformation-theoretic point of view. The informationextracted from the results of quantum measurementperformed on a physical system and the change of theShannon entropy of the measured physical system areinvestigated in detail. It is shown that the amount ofinformation about the intrinsic observable of themeasured physical system can be expressed by the mutualinformation between the physical system and themeasurement apparatus if the intrinsic observablecommutes with the operational observable defined by thequantum measurement process. Furthermore, the conditioncan be obtained under which the amount of informationextracted from the measurement outcomes becomes equal tothe decrease of the entropy of the measured physical system. In addition, the change of theShannon entropy is compared with that of the von Neumannentropy. The general results do not depend on whetherthe readout of the measurement outcome obeys the projection postulate or not. Severalexamples of quantum measurement processes are consideredto examine the general results.  相似文献   

18.
Given the algebra of observables of a quantum system subject to selection rules, a state can be represented by different density matrices. As a result, different von Neumann entropies can be associated with the same state. Motivated by a minimality property of the von Neumann entropy of a density matrix with respect to its possible decompositions into pure states, we give a purely algebraic definition of entropy for states of an algebra of observables, thus solving the above ambiguity. The entropy so-defined satisfies all the desirable thermodynamic properties and reduces to the von Neumann entropy in the quantum mechanical case. Moreover, it can be shown to be equal to the von Neumann entropy of the unique representative density matrix belonging to the operator algebra of a multiplicity-free Hilbert-space representation.  相似文献   

19.
The decoherence process is analyzed for an open quantum system that is classically chaotic, with a classical linear frequency entropy developed to measure the stability of classical motion. Investigation shows that the decoherence measured by the rate of quantum linear entropy production varies significantly with both the underlyingclassical orbits and the classical linear frequency entropy. Such correspondence is also supported by the further investigation on the Loschmidt Echo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号