首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Currently, diagnosing type 2 diabetes (T2D) is a great challenge. Thus, there is a need to find rapid, simple, and reliable analytical methods that can detect the disease at an early stage. The aim of this work was to shed light on the importance of sample collection options, sample preparation conditions, and the applied capillary electrophoresis bioanalytical technique, for a high-resolution determination of the N-glycan profile in human blood samples of patients with type 2 diabetes (T2D). To achieve the profile information of these complex oligosaccharides, linked by asparagine to hIgG in the blood, the glycoproteins of the samples needed to be cleaved, labelled, and purified with sufficient yield and selectivity. The resulting samples were analyzed by capillary electrophoresis, with laser-induced fluorescence detection. After separation parameter optimization, the capillary electrophoresis technique was implemented for efficient N-glycan profiling of whole blood samples from the diabetic patients. Our results revealed that there were subtle differences between the N-glycan profiles of the diabetic and control samples; in particular, two N-glycan structures were identified as potential glycobiomarkers that could reveal significant changes between the untreated/treated type 2 diabetic and control samples. By analyzing the resulting oligosaccharide profiles, clinically relevant information was obtained, revealing the differences between the untreated and HMG-CoA reductase-inhibitor-treated diabetic patients on changes in the N-glycan profile in the blood. In addition, the information from specific IgG N-glycosylation profiles in T2D could shed light on underlying inflammatory pathophysiological processes and lead to drug targets.  相似文献   

2.
A synthetic method for the core 4 O-glycan-linked Ser and Thr was developed. Highly stereoselective 3-O- and 6-O-glycosylation was achieved by using two distinctively protected N-trichloroacetyllactosaminyl fluorides (3 and 12). Microwave-assisted Zn reduction rapidly and efficiently converted N-trichloroacetylglucosamine (GlcNTCA) to N-acetylglucosamine (GlcNAc). In order to demonstrate the usefulness of the protected core 4 O-glycan a segment (Gly34-Gly58) of emmprin (extracellular matrix metalloproteinase inducer), a cancer metastasis-related glycoprotein, was synthesized by the solid-phase method, utilizing the pentasaccharyl Thr (2) to introduce an O-glycan in place of the native N-glycan at Asn44.  相似文献   

3.
N-Glycosylation is a common post-translational modification of monoclonal antibodies with a potential effect on the efficacy and safety of the drugs; detailed knowledge about this glycosylation is therefore crucial. We have developed a reversed-phase liquid chromatographic–mass spectrometric method, with different fluorescent labels, for analysis of N-glycosylation, and compared the sensitivity and selectivity of the methods. Our work demonstrates that anthranilic acid as fluorescent label in combination with reversed-phase liquid chromatography–mass spectrometry is an advantageous method for identification and quantification of neutral and acidic N-glycans. Our results show that mass spectrometry-based quantification correlates with quantification by fluorescence. Chromatographic discrimination between several structural glycan isomers was achieved. The sharp peaks of the eluting anthranilic acid-labeled N-glycans enabled on-line mass spectrometric analysis of even low-abundance glycan species. The method is broadly applicable to N-glycan analysis and is an orthogonal analytical method to the widely established hydrophilic-interaction liquid chromatography of 2-aminobenzamide-labeled N-glycans for characterization of N-glycans derived from biopharmaceuticals.  相似文献   

4.
The combination of solid phase peptide synthesis and endo-β-N-acetylglucosaminidase (ENGase) catalysed glycosylation is a powerful convergent synthetic method allowing access to glycopeptides bearing full-length N-glycan structures. Mannose-terminated N-glycan oligosaccharides, produced by either total or semi-synthesis, were converted into oxazoline donor substrates. A peptide from the human cytomegalovirus (CMV) tegument protein pp65 that incorporates a well-characterised T cell epitope, containing N-acetylglucosamine at specific Asn residues, was accessed by solid phase peptide synthesis, and used as an acceptor substrate. High-yielding enzymatic glycosylation afforded glycopeptides bearing defined homogeneous high-mannose N-glycan structures. These high-mannose containing glycopeptides were tested for enhanced targeting to human antigen presenting cells (APCs), putatively mediated via the mannose receptor, and for processing by the APCs for presentation to human CD8+ T cells specific for a 9-mer epitope within the peptide. Binding assays showed increased binding of glycopeptides to APCs compared to the non-glycosylated control. Glycopeptides bearing high-mannose N-glycan structures at a single site outside the T cell epitope were processed and presented by the APCs to allow activation of a T cell clone. However, the addition of a second glycan within the T cell epitope resulted in ablation of T cell activation. We conclude that chemo-enzymatic synthesis of mannosylated glycopeptides enhances uptake by human APCs while preserving the immunogenicity of peptide epitopes within the glycopeptides, provided those epitopes are not themselves glycosylated.  相似文献   

5.
Glycan biosynthesis simulation research has progressed remarkably since 1997, when the first mathematical model for N-glycan biosynthesis was proposed. An O-glycan model has also been developed to predict O-glycan biosynthesis pathways in both forward and reverse directions. In this work, we started with a set of O-glycan profiles of CHO cells transiently transfected with various combinations of glycosyltransferases. The aim was to develop a model that encapsulated all the enzymes in the CHO transfected cell lines. Due to computational power restrictions, we were forced to focus on a smaller set of glycan profiles, where we were able to propose an optimized set of kinetics parameters for each enzyme in the model. Using this optimized model we showed that the abundance of more processed glycans could be simulated compared to observed abundance, while predicting the abundance of glycans earlier in the pathway was less accurate. The data generated show that for the accurate prediction of O-linked glycosylation, additional factors need to be incorporated into the model to better reflect the experimental conditions.  相似文献   

6.
Asparagine-linked N-glycans on proteins have diverse structures, and their functions vary according to their structures. In recent years, it has become possible to obtain high quantities of N-glycans via isolation and chemical/enzymatic/chemoenzymatic synthesis. This has allowed for progress in the elucidation of N-glycan functions at the molecular level. Interaction analyses with lectins by glycan arrays or nuclear magnetic resonance (NMR) using various N-glycans have revealed the molecular basis for the recognition of complex structures of N-glycans. Preparation of proteins modified with homogeneous N-glycans revealed the influence of N-glycan modifications on protein functions. Furthermore, N-glycans have potential applications in drug development. This review discusses recent advances in the chemical biology of N-glycans.  相似文献   

7.
An efficient and completely stereocontrolled synthesis of the N-glycan Manβ(1-4)GlcNAc disaccharide is achieved by propargyl mediated intramolecular aglycon delivery (IAD). Isomerisation of the 2-O-progargyl group of a manno thioglycoside to an allene is followed by iodonium ion mediated mixed acetal formation with the 4-OH of a protected GlcNAc derivative, and subsequent intramolecular glycosylation with complete control of anomeric stereochemistry. Access to this key disaccharide intermediate allows completion of the total synthesis of the core N-glycan pentasaccharide.  相似文献   

8.
A method is presented for the quantitative determination of memantine in plasma by use of the derivatization reagent o-(pentafluorobenzyloxycarbonyl)-2,3,4,5-tetrafluorobenzoyl chloride. Memantine can be quantitatively analyzed down to 49?pg per mL of plasma using a 250?μL sample and negative ion chemical ionisation mass spectrometry (GC-NICI-MS). Plasma samples were made alkaline with carbonate buffer and extracted with n-hexane. The extracts were treated with reagent solution for 20?min, concentrated, and submitted to GC-NICI-MS. The method is rapid because extraction and derivatization occur in one single step. Amantadine is used as an internal standard. The utility and robustness of the assay is demonstrated by giving data on specificity, linearity, accuracy and precision, benchtop stability, freeze-thaw stability, autosampler stability, aliquot analysis, and prospective analytical batch size accuracy.
Figure
Chemical structure of N-(o-pentafluorobenzyloxycarbonyl)- 2,3,4,5-tetrafluorobenzoyl)memantine  相似文献   

9.
A hybrid-type N-glycan decasaccharide GlcNAcMan7GlcNAc2 was synthesized from the pentasaccharide GlcNAcMan2GlcNAc2 as an advanced intermediate and an acyl-protected pentamannosyl donor. Benzyl mannoside was regioselectively benzoylated and glycosylated at OH-3 and OH-6 with a dimannoside to give the 3,6-branched pentamannoside. Coupling of the two pentasaccharides furnished the target decasaccharide in 60% yield. Deprotection of the base labile functions furnished a hybrid-type N-glycan decasaccharide functionalized for the conjugation with peptides or proteins.  相似文献   

10.
Neoglycoconjugates mimicking natural compounds and possessing a variety of biological functions are very successful tools for researchers to understand the general mechanisms of many biological processes in living organisms. These substances are characterized by high biotolerance and specificity, with low toxicity. Due to the difficult isolation of individual glycoclusters from biological objects, special interest has been directed toward synthetic analogs. This review is mainly focused on the one-pot, double-click methodology (containing alkyne–azide click cycloaddition with the following 6π-azaelectrocyclization reactions) used in the synthesis of N-glycoconjugates. Homogeneous (including one type of biantennary N-glycan fragments) and heterogeneous (containing two to four types of biantennary N-glycan fragments) glycoclusters on albumin were synthesized via this strategy. A series of cell-, tissue- and animal-based experiments proved glycoclusters to be a very promising class of targeted delivery systems. Depending on the oligosaccharide units combined in the cluster, their amount, and arrangement relative to one another, conjugates can recognize various cells, including cancer cells, with high selectivity. These results open new perspectives for affected tissue visualization and treatment.  相似文献   

11.
Yong Joo Lee 《Tetrahedron》2009,65(32):6310-7427
Synthesis of undecaprenyl pyrophosphate (Und-PP)-linked glycans is described. Bacterial ([E]3,[Z]7)-undecaprenol was synthesized from trans-geranylgeranyl sulfone and isoprenoid building blocks, which was converted to undecaprenyl phosphate (Und-P). It was coupled with glycosyl phosphates to afford Und-PP-linked glycans, including core trisaccharide of Campylobacter jejuni N-glycan. Our synthetic method for Und-PP-linked glycan would provide various substrates as a useful tool for systematic analysis of bacterial protein N-glycosylation.  相似文献   

12.
Gamma radiation was used in every step of the synthesis of a sequential interpenetrating polymer network made of two “smart” polymers: poly(acrylic acid) (PAAc) and poly (N-isopropylacrylamide) (PNIPAAm), the latter grafted onto polypropylene (PP) films (PP-g-PNIPAAm) with the aim of developing medicated coatings for medical devices. Three steps were followed for obtaining net-PP-g-PNIPAAm-inter-net-PAAc: graft copolymerization of PNIPAAm onto PP films by gamma pre-irradiation oxidative method, cross-linking of PP-g-PNIPAAm by gamma irradiation in water to form the first network, with or without N,N′-methylenebis(acrylamide) (MBAAm), and finally the formation of the second network through the polymerization and cross-linking of AAc inside cross-linked PP-g-PNIPAAm by a low gamma radiation dose of 2.5 kGy. The films were characterized regarding the amount of grafted polymers and their composition (FTIR-ATR), thermal behavior (DSC), temperature- and pH-responsive swelling and contact angle (critical pH 6 and lower critical solution temperature ∼33 °C), and loading and release rate of vancomycin. Drug loading was driven by specific interactions between vancomycin and PAAc. Drug-loaded films sustained the delivery for several hours at pH 7.4 and provided release rate values adequate for killing bacteria attempting to adhere the surface of the films.  相似文献   

13.
Bisected N-glycans represent a unique class of protein N-glycans that play critical roles in many biological processes. Herein, we describe the systematic synthesis of these structures. A bisected N-glycan hexasaccharide was chemically assembled with two orthogonal protecting groups attached at the C2 of the branching mannose residues, followed by sequential installation of GlcNAc and LacNAc building blocks to afford two asymmetric bisecting “cores”. Subsequent enzymatic modular extension of the “cores” yielded a comprehensive library of biantennary N-glycans containing the bisecting GlcNAc and presenting 6 common glycan determinants in a combinatorial fashion. These bisected N-glycans and their non-bisected counterparts were used to construct a distinctive glycan microarray to study their recognition by a wide variety of glycan-binding proteins (GBPs), including plant lectins, animal lectins, and influenza A virus hemagglutinins. Significantly, the bisecting GlcNAc could bestow (PHA-L, rDCIR2), enhance (PHA-E), or abolish (ConA, GNL, anti-CD15s antibody, etc.) N-glycan recognition of specific GBPs, and is tolerated by many others. In summary, synthesized compounds and the unique glycan microarray provide ideal standards and tools for glycoanalysis and functional glycomic studies. The microarray data provide new information regarding the fine details of N-glycan recognition by GBPs, and in turn improve their applications.

A library of bisected N-glycans was chemoenzymatically synthesized and used to fabricate a unique bisected/non-bisected glycan microarray. The effect of the bisecting GlcNAc in glycan recognition by glycan-binding proteins was interpreted with this array.  相似文献   

14.
O-glycosylation-site characterization of individual glycoproteins is a major challenge because of the heterogeneity of O-glycan core structures. In proteomic studies, O-glycosylation-site analysis is even more difficult because of the complexity of the sample. In this work, we designed a rapid and convenient workflow for characterizing the O-glycosylation sites of individual proteins and the human-plasma proteome. A mixture of exoglycosidases was used to partially remove O-glycan chains and leave an N-acetylgalacosamine (GalNAc) residue attached to the Ser or Thr residues. The O-glycosylated peptides could then be identified by using liquid chromatography–tandem mass spectrometry (LC–MS–MS) to detect the 203 Da mass increase. Jacalin was used to selectively isolate O-GalNAc glycopeptides before LC–MS–MS analysis, which is optional for individual proteins and necessary for complex human-plasma proteins. Bovine fetuin and human chorionic gonadotropin (hCG) were used to test the analytical workflow. The workflow indicated superior sensitivity by not only covering most previously known O-glycosylation sites but also discovering several novel sites. Using only one drop of blood, a total of 49 O-GalNAc-linked glycopeptides from 36 distinctive glycoproteins in human plasma were identified unambiguously. The approach described herein is simple, sensitive, and global for site analysis of core 1 through core 4 O-glycosylated proteins.  相似文献   

15.
We report in this study on the first electrochemical evidence of existence of an oxomanganese(V) porphyrin complex, formed upon the reaction of the manganese meso-tetrakis-(2,3,5,6-tetrafluoro-N,N,N-trimethyl-4-aniliniumyl) porphyrin (noted Mn(TF4TMPA) with hydrogen peroxide in 50 mM borate buffer aqueous solution (pH 10.5) at 0 °C. The obtained results bring a clear insight into the previously reported and suggested formation of such an intermediate during the electroassisted reaction of manganese porphyrins or Schiff bases and molecular oxygen in various conditions, as enzyme mimetic.  相似文献   

16.
A simple and efficient dual preconcentration method of on-column liquid–liquid–liquid microextraction (LLLME) coupled with base stacking was developed for capillary zone electrophoresis (CZE) in this paper. Four N-methyl carbamates were used as target compounds to evaluate the enrichment means. The carbamates in sample solutions (donor phase) were extracted into a dodecanol phase immobilized on a porous hollow fiber, hydrolyzed and back extracted into 0.20 μL running buffer (acceptor phase) of 30 mmol/L methylamine hydrochloride (pH 11.6) containing 0.5 mmol/L tetradecyltrimethylammonium bromide inside the hollow fiber, stacked further with 0.5 mol/L NaOH injected at −10 kV for 60 s, and separated by CZE. Analytical parameters affecting the LLLME, base stacking and CZE were investigated, including sample solution volume, pH and temperature, extraction time, stirring rate, buffer component, buffer pH, NaOH concentration, stacking time, etc. The enrichment factors of the carbamates were higher than 1100. The relative standard deviation (RSD) of peak height and limits of detection (LODs) were 4.5–5.5% (n = 6) and 2–4 ng/mL (S/N = 3) for standard solutions, respectively. The proposed method was applied to the analysis of vegetable and fruit samples with the RSD less than 6.0% (n = 3) and LODs of 6–10 ng/g (S/N = 3). The calibration solutions were prepared by diluting the stock solutions with blank sample solutions, and the calibration concentrations ranged from 0.012 to 1.0 μg/mL (r > 0.9951). The analytical results demonstrated that the LLLME coupled with base stacking was a simple, convenient and reliable on-column sample pretreatment method for the analysis of anionic analytes in CZE.  相似文献   

17.
《Tetrahedron: Asymmetry》2007,18(14):1721-1734
The use of propargyl mediated intramolecular aglycon delivery (IAD) for the synthesis of the key Manβ(1→4)GlcNAc linkage of N-glycan oligosaccharides, including the core N-glycan pentasaccharide, is investigated. Isomerisation of a 2-O-progargyl group of manno thioglycoside donors to an allene is followed by iodonium ion mediated mixed acetal formation with the 4-OH of protected GlcNAc acceptors, and subsequent intramolecular glycosylation occurs with complete control of anomeric stereochemistry to form the Manβ(1→4)GlcNAc linkage. A variety of linear and convergent approaches (1+2, 3+1, 3+2) to the core pentasaccharide are investigated as means of probing the generality and limitations of this type of intramolecular aglycon delivery for the formation of β-mannoside linkages in complex oligosaccharides.  相似文献   

18.
Asparagine-linked protein glycosylations (N-glycosylations) are one of the most abundant post-translational modifications and are essential for various biological phenomena. Herein, we describe the isolation, structural determination, and chemical synthesis of the N-glycan from the hyperthermophilic archaeon Thermococcus kodakarensis. The N-glycan from the organism possesses a unique structure including myo-inositol, which has not been found in previously characterized N-glycans. In this structure, myo-inositol is highly glycosylated and linked with a disaccharide unit through a phosphodiester. The straightforward synthesis of this glycan was accomplished through diastereoselective phosphorylation and phosphodiester construction by SN2 coupling. Considering the early divergence of hyperthermophilic organisms in evolution, this study can be expected to open the door to approaching the primitive function of glycan modification at the molecular level.  相似文献   

19.
A synthesis of the protected biantennary N-glycan of the naturally occurring glycoprotein, erythropoietin, is described.  相似文献   

20.
Human natural killer—1 (HNK-1) is a sulfated glyco-epitope regulating cell adhesion and synaptic functions. HNK-1 and its non-sulfated forms, which are specifically expressed in the brain and the kidney, respectively, are distinctly biosynthesized by two homologous glycosyltransferases: GlcAT-P in the brain and GlcAT-S in the kidney. However, it is largely unclear how the activity of these isozymes is regulated in vivo. We recently found that bisecting GlcNAc, a branching sugar in N-glycan, suppresses both GlcAT-P activity and HNK-1 expression in the brain. Here, we observed that the expression of non-sulfated HNK-1 in the kidney is unexpectedly unaltered in mutant mice lacking bisecting GlcNAc. This suggests that the biosynthesis of HNK-1 in the brain and the kidney are differentially regulated by bisecting GlcNAc. Mechanistically, in vitro activity assays demonstrated that bisecting GlcNAc inhibits the activity of GlcAT-P but not that of GlcAT-S. Furthermore, molecular dynamics simulation showed that GlcAT-P binds poorly to bisected N-glycan substrates, whereas GlcAT-S binds similarly to bisected and non-bisected N-glycans. These findings revealed the difference of the highly homologous isozymes for HNK-1 synthesis, highlighting the novel mechanism of the tissue-specific regulation of HNK-1 synthesis by bisecting GlcNAc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号