共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
高功率电子芯片的安全运行需要高效的散热技术。流动沸腾换热由于高换热系数受到广泛关注。为精确模拟微通道内流动沸腾复杂两相流过程,本文提出了耦合VOF方法的在相界面处迭代求解能量源项的相变模型。针对单微柱微通道内流动沸腾换热过程进行了数值模拟,分析了瞬态两相流过程及温度场演变规律,查明了热流密度及进口过冷度的影响机制。结果表明,由于局部蒸汽的覆盖,不同工况下微通道内流动沸腾存在热阻的转折点,高热流密度对应更高的气泡生长速度和成核面积,高过冷度会延缓转折点,但整体热阻将升高。 相似文献
3.
4.
微通道换热器以其良好换热能力已被广泛地应用于当前的实验研究中,通过数值模拟的方法对通断微通道内的流动特性进行了研究。重点分析了通道结构对微通道内速度分布、压力分布的影响。结果显示,通断通道的整体压降比连续通道增加了17%,当微通道内的雷诺数>1 500时,微通道内单相流动达到了旺盛湍流,宽高比对压降的影响消失。通断通道结构下的流动转捩雷诺数600~800之间,比常规尺度下的转捩雷诺数低得多(2 300左右)。通过通道数对流动性能的研究发现,增加通道数,有利于降低整体压降并增加流动稳定性。 相似文献
5.
近年来,微尺度条件下功能性流体换热与流动已经成为极具潜力和挑战性的课题,在化工、医药、传热与能源利用等系统中获得广泛应用。超临界CO_2流体作为一种天然替代性环保工质,在相关细微尺度下已证明具有良好的热力学性能。本研究采用了数值计算的方法对近临界CO_2流体在微通道内流动稳定性和换热特性进行了系列的探索。研究发现,在靠近临界点的相对较宽泛的区域内,流体具有强膨胀特性和低热扩散特性,从而在微尺度条件下产生局部旋涡流动,大大促进了微尺度的混合和对流换热效率。进一步,研究针对这种微尺度局部涡动进行了机理分析,获得了微通道内近临界流体瞬态换热和超临界热膨胀效应特性。 相似文献
6.
7.
8.
基于微通道两相流的微流控技术已得到广泛的应用,精确控制通道中气泡或液滴的尺寸对相关微流控系统的设计起到至关重要的作用.本文基于流体体积法重构Y型微通道内的气泡破裂行为,系统研究了气泡无量纲尺寸(1.2—2.7)、出口流量比(1—4)以及主通道雷诺数(100—600)对气泡破裂行为的影响.发现气泡非对称破裂过程分为3个阶段:延伸阶段、挤压阶段和快速破裂阶段.在气泡初始尺寸较小或出口流量较大的情况下,气泡不破裂,只经历延伸阶段和挤压阶段.进一步针对不同尺寸和出口流量比揭示了气泡的4种破裂模式:隧道-隧道破裂、阻塞-阻塞破裂、隧道-阻塞破裂和不破裂.随着出口流量比的增大,气泡的破裂过程逐渐变为非对称破裂,其破裂模式沿隧道-隧道破裂/阻塞-阻塞破裂、逐渐向隧道-阻塞破裂和不破裂方向转变.在此基础上获得了不同雷诺数和初始气泡尺寸下,气泡破裂的临界流量比以及气泡破裂后子气泡体积比随出口流量比的变化规律并提炼了相应的准则关联式,可为精确调控破裂后子气泡的尺寸提供理论指导. 相似文献
9.
微通道换热器因其换热效率高、制冷剂充注量小等特点,被广泛应用于汽车空调,但当其作为家用空调系统蒸发器使用时会因为结露而影响换热性能。该文以微通道换热器为研究对象,针对其结露工况下的换热性能进行实验研究,讨论结露前后空气进口状态参数及迎面风速对其换热性能的影响。通过研究发现,结露对空气进出口压降有很大影响,结露前后压降增幅127%以上;结露对空气侧换热系数同样存在较大影响,换热系数降幅约14.6%。 相似文献
10.
11.
本文采用有限容积法数值模拟了在电动效应作用下微通道内流体的流动特性。分别采用Poisson方程和Nernst- Planck方程计算电动势和离子浓度分布。结果表明在双电层相互交叠的情况下,微通道内轴向的流动电势先减小后增大,并逐渐趋于定值,从而导致了轴向电动效应不断增强。 相似文献
12.
13.
14.
15.
16.
17.
18.
高密度、小体积和高集成的电子元器件散热困难,易造成过早失效,采用微通道换热器可以实现小体积内高热流的散热,但流动阻力很大.为了保证传热效果,降低流动阻力,本文提出了一种新型的微通道结构并对其流动与传热特性进行了数值模拟.首先研究了微通道形状和结构,模拟结果表明:进出口截面宽高比为0.8的矩形微通道的换热效果最好;并在此基础上提出一种康托尔分型凹槽结构,研究了有无康托尔分形以及不同分形级数对流动与传热性能的影响,综合对比发现:第二级康托尔分形模型N2既能保证热阻显著降低,又能相比阵列结构降低压降,具有明显的换热优势;最后对这种康托尔分形结构的凹槽形状,尺寸及不同方向上的分形进行研究,结果表明梯形凹槽的下上表面长度比b/a为0.6、流动方向分形比fx为1.25和通道高度方向分形比fy为1.5时换热流动性能最佳. 相似文献
19.
高密度、 小体积和高集成的电子元器件散热困难, 易造成过早失效, 采用微通道换热器可以实现小体积内高热流的散热, 但流动阻力很大. 为了保证传热效果, 降低流动阻力, 本文提出了一种新型的微通道结构并对其流动与传热特性进行了数值模拟. 首先研究了微通道形状和结构, 模拟结果表明: 进出口截面宽高比为0.8 的矩形微通道的换热效果最好; 并在此基础上提出一种康托尔分型凹槽结构, 研究了有无康托尔分形以及不同分形级数对流动与传热性能的影响, 综合对比发现: 第二级康托尔分形模型 N2 既能保证热阻显著降低, 又能相比阵列结构降低压降, 具有明显的换热优势; 最后对这种康托尔分形结构的凹槽形状, 尺寸及不同方向上的分形进行研究, 结果表明梯形凹槽的下上表面长度比b/a 为0.6 、 流动方向分形比fx 为1 .25 和通道高度方向分形比fy 为1 .5 时换热流动性能最佳. 相似文献