首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
何林安  周坤  张亮  李弋  杜维川  胡耀  高松信  唐淳 《强激光与粒子束》2021,33(9):091001-1-091001-5
设计并制备了一款780 nm半导体激光器,并进行了外腔反馈锁模研究。利用金属有机化学气相沉积技术制备了激光器外延层,采用GaAsP/GaInP作为量子阱/波导层有源区,限制层采用低折射率AlGaInP材料。采用超高真空解理钝化技术,在激光器腔面蒸镀无定形ZnSe钝化层。未钝化器件在输出功率2.5 W时发生腔面灾变损伤(COD),钝化后器件未发生COD现象,电流在10 A时输出功率10.1 W,电光转换效率54%。体布拉格光栅(VBG)外腔锁定前后,器件的光谱半峰全宽分别为2.6 nm和0.06 nm,VBG变温调控波长范围约230 pm。  相似文献   

2.
46.2W连续输出808nm高功率无铝半导体激光线阵模块   总被引:1,自引:1,他引:0       下载免费PDF全文
利用InGaAs/InGaAsP应变量子阱外延材料制作出高功率半导体激光器线阵模块,前腔面镀制了单层Al2O3,后腔面镀制了Al2O3/5(HfO2/SiO2)/HfO2,采用无氧铜热沉和高效率的液体冷却器散热。在室温下,驱动电流50A时输出功率高达46.2W,最高电光转换效率41.3%,斜率效率1.15W/A。器件中心激射波长810nm,波长温度系数为0.28nm/℃,光谱半峰全宽(FWHM)3nm,寿命突破11732h。  相似文献   

3.
本文设计并制作了一种高效率、高可靠性的915 nm半导体激光器。半导体激光器是光纤激光器的关键部件,为了最大限度地提高器件的电光转换效率,在设计上采用双非对称大光腔波导结构,同时对量子阱结构、波导结构、掺杂以及器件结构进行了系统优化。器件模拟表明,在25℃环境温度下,器件的最高电光转换效率达到67%。采用金属有机气相沉积(MOCVD)法进行材料生长,随后制备了发光区域宽度为95μm、腔长为4.8 mm的激光芯片。测试表明,封装后器件的效率以及其它参数指标达到国际先进水平,在室温下阈值电流为1 A,斜率效率为1.18 W/A,最高电光转换效率达66.5%,输出功率12 W时,电光转换效率达到64.3%,测试结果与器件理论模拟高度吻合。经过约6 000 h的寿命加速测试,器件功率没有出现衰减,表明制作的高功率915 nm激光芯片具有很高的可靠性。  相似文献   

4.
808 nm高占空比大功率半导体激光器阵列   总被引:4,自引:3,他引:1       下载免费PDF全文
采用渐变折射率分别限制单量子阱宽波导结构,通过降低非辐射复合、有源层载流子泄露、散射和吸收损耗来提高出射效率和降低激光阈值电流,从而提高半导体激光器阵列的输出功率;同时使P面具有更高的粒子掺杂数密度,优化N面合金条件,降低半导体激光器的串联电阻,降低焦耳热,提高了半导体激光器阵列的转换效率。利用金属有机化学气相淀积技术生长GaInAsP/InGaP/AlGaAs渐变折射率分别限制单量子阱宽波导结构激光器材料,利用该材料制成半导体激光线阵列在20%高占空比的输入电流下,半导体激光器的输出峰值功率达到189.64 W(180 A),斜率效率为1.1 W/A,中心波长为805.0 nm,阈值电流为7.6 A,电光转换效率最高可达55.4%;在1%占空比的输入电流下,阵列的输出峰值功率可达324.9 W(300 A),斜率效率为1.11 W/A,阈值电流为7.8 A,电光转化效率最高达55.6%,中心波长为804.5 nm。  相似文献   

5.
为了提高1060 nm垂直腔面发射激光器(VCSEL)的性能,本文对大功率1060 nm VCSEL进行了理论模拟和实验研究。计算得到红移速度为0.40 nm/K,据此确定增益和腔模失配量为-20 nm。对比分析了6种不同InGaAs组分和厚度的量子阱,以及3种不同势垒材料的增益特性和输出特性,模拟结果表明,应变补偿的InGaAs/GaAsP量子阱有源区在温度稳定性、阈值电流以及功率方面更有优势。对P型分布式布拉格反射镜(DBR)进行优化设计,优化DBR渐变层厚度和对数,有助于获得更好的输出特性。采用金属有机化学气相沉积生长了InGaAs/GaAsP应变补偿量子阱结构的VCSEL外延片,并制备了单管和阵列VCSEL,实验数据和理论分析基本吻合。实验测得,288单元VCSEL阵列在4.5 A电流下,连续输出功率为2.62 W,最高电光转换效率为36.8%,5 mm×5 mm VCSEL阵列准连续条件下(脉宽为100μs,占空比为1%),且在100 A电流下,获得峰值功率为53.4 W。  相似文献   

6.
为了提高低温工作环境下808 nm半导体激光器的输出特性,深入研究了电光转换效率的温度特性。结合载流子泄漏抑制和器件串联电阻的优化考虑,从理论上深入分析了有源区量子阱内的载流子限制现象,提出针对低温工作环境下的势垒高度及相应的量子阱结构设计方法,包括势垒层的材料组分、厚度等重要参数的优化,极大地改善了器件在低温工作环境下的性能。采用优化后的外延结构,制备了腔长2 mm的半导体激光巴条。在工作温度-50℃、注入电流为600 A时,巴条输出功率达到799 W,电光转换效率为71%,斜率效率为1.34 W/A;注入电流为400 A时,器件达到最高电光转换效率73.5%,此时的载流子限制效率约为99%,串联电阻为0.43 mΩ;在-60~60℃温度范围内,中心波长随温度的漂移系数为0.248 nm/℃。  相似文献   

7.
王贞福  杨国文  吴建耀  宋克昌  李秀山  宋云菲 《物理学报》2016,65(16):164203-164203
通过设计高效率808 nm非对称宽波导外延结构,减少P型波导层和包层的自由载流子光吸收,实现腔内光吸收损耗为0.63 cm~(-1).制备的808 nm半导体激光器阵列在室温25?C下,实现驱动电流135 A,工作电压1.76 V,连续输出功率大于150 W,斜率效率高达1.25 W/A,中心波长809.3 nm,器件最高电光转换效率为65.5%,这是目前国内报道的808 nm半导体激光器阵列的最高电光转换效率,达到国际同类器件最好水平.  相似文献   

8.
941nm2%占空比大功率半导体激光器线阵列   总被引:4,自引:3,他引:1  
计算了半导体激光器的激射波长与量子阱宽度以及有源层中In组分的关系,确定了941nm波长的量子阱宽度和In组分.并利用金属有机化合物气相淀积(MOCVD)技术生长了InGaAs/GaAs/AlGaAs分别限制应变单量子阱激光器材料.利用该材料制成半导体激光器线阵列的峰值波长为940.5 nm,光谱的FWHM为2.6 nm,在400 μs,50 Hz的输入电流下,输出峰值功率达到114.7 W(165 A),斜率效率高达0.81 W/A,阈值电流密度为103.7 A/cm2;串联电阻5 mΩ,最高转换效率可达36.9%.  相似文献   

9.
采用激射波长为808 nm的GaAs/AlGaAs梯度折射率波导分别限制单量子阱结构外延片,制备了沟道深度不同的半导体激光器阵列,并对载流子分布进行理论分析和模拟。理论和实验结果表明:引入脊形台面和隔离沟道后,激光器阵列的输出功率、电光转换效率、斜率效率和光谱特性均有显著提高。随着沟道的加深,对电流侧向扩散的限制作用增强,从而提高了阵列性能。  相似文献   

10.
通过对波导结构和P包层的掺杂分布进行优化,减少了光场与P包层掺杂区的交叠,从而减小了半导体激光器的内部光学损耗。同时使用宽带隙GaAsP作为势垒层可以减少有源区载流子泄露,实现了内部光学损耗为0.259 cm-1。所制备的975nm波长、100μm条宽、4 mm腔长单管器件,在室温下器件的连续输出光功率达到21 W。当输出功率为20 W时,功率转换效率仍大于50%。  相似文献   

11.
808 nm大功率半导体激光器阵列的优化设计   总被引:1,自引:0,他引:1       下载免费PDF全文
 采用激射波长为808 nm的GaAs/AlGaAs梯度折射率波导分别限制单量子阱结构外延片,制备了沟道深度不同的半导体激光器阵列,并对载流子分布进行理论分析和模拟。理论和实验结果表明:引入脊形台面和隔离沟道后,激光器阵列的输出功率、电光转换效率、斜率效率和光谱特性均有显著提高。随着沟道的加深,对电流侧向扩散的限制作用增强,从而提高了阵列性能。  相似文献   

12.
伏丁阳  高欣  赵仁泽  张悦  苏鹏  薄报学 《发光学报》2023,(12):2231-2241
为提高1μm波段超辐射发光二极管的输出特性,对外延结构及J型波导结构参数进行研究,基于研究结果确定外延结构及波导结构参数并对电极窗口制备工艺及单层氧化铪薄膜成膜条件进行了优化。研究表明,缩小波导与限制层AlGaAs材料中Al组分差值利于改善器件光束特性。此外,增加刻蚀深度、脊宽及曲率半径均会使损耗系数减小以提高器件输出功率。基于仿真结果制备出非均匀阱宽大阱深的三量子阱结构器件,前腔面镀制反射率约为0.5%的单层氧化铪薄膜,后腔面蒸镀高反膜,腔长约2 mm,波导曲率半径为21.8mm,在500 mA连续电流注入下,实现了118.1 mW输出功率和32.5 nm光谱半宽。单层增透膜的设计抑制了器件激射并简化了工艺复杂度,避免了多层增透膜不同材料间的应力问题。  相似文献   

13.
为提高1060 nm锥形激光器的输出性能,对1060 nm锥形激光器的脊形波导区和锥形增益区长度进行了优化。当保持总腔长3 mm不变时,设置脊形波导区长度为500,750,1000μm。在输出功率为2 W时,对三种情况所需的输入电流、功率-电流曲线斜率效率、电光转换效率、输出光谱及远场特性进行了对比。研究结果表明,当脊形波导区长度为750μm,锥形增益区长度为2250μm时,1060 nm锥形激光器的输出性能最优。当输出功率为2 W时,所需输入电流为3.95 A,斜率效率为0.61 W/A,转换效率为33.9%,光谱宽度(半峰全宽)为0.3 nm,远场近似高斯分布且95%能量处的水平发散角约为14°。  相似文献   

14.
为了改善9xx nm高功率半导体激光器的性能,对n包层和p包层的掺杂分布进行了调整,以减小激光器的内部损耗。同时为了减小有源区载流子的泄漏,在有源区和波导层之间引入了高能量带隙GaAsP。设计并制作了内部损耗为1.25 cm-1的高功率激光器。器件可靠性工作的最大输出功率为26.5 W。当输出功率为10.5 W时,最大电光功率转换效率为72.4%,斜率效率为1.16 W/A。  相似文献   

15.
1 550 nm垂直腔面发射激光器具有良好的人眼安全性和透射性,但实现其高效率和高功率输出一直是难以解决的问题。以1 550 nm氧化限制型垂直腔面发射激光器为研究目标,对不同结构、不同氧化孔径与输出特性关系进行仿真分析。随着氧化孔径增加,垂直腔面发射激光器芯片的激射波长发生红移现象,但氧化孔径从14μm继续增大时,激射波长几乎不红移。对两种不同氧化限制结构的芯片进行仿真,输出功率和转换效率对比结果表明单氧化层结构性能更好。在设计多结垂直腔面发射激光器时考虑有源区之间是否增加氧化层,最终发现两种氧化限制结构均在9μm孔径时具有较高的输出功率,单层结构100 mA时的输出功率约为177.55 mW,同时斜率效率也高达1.79 W/A,最大功率转换效率为10μm孔径时的37.7%,多层结构斜率效率更高达2.36 W/A。氧化限制型结构在多结垂直腔面发射激光器基础上进一步提升功率、效率等参数,可为高功率1 550 nm垂直腔面发射激光器的输出特性优化提供参考。  相似文献   

16.
通过对影响垂直腔面发射激光器(vertical cavity surface emitting laser, VCSEL)的功率转换效率的因素进行理论分析,得出斜率效率是影响功率转换效率的主要因素的结论.为获得高功率转换效率,通过对有源区量子阱、P型和N型分布布拉格反射镜(DBR)等进行优化,设计出了905 nm VCSEL的外延结构并进行了高质量外延生长.成功制备出了不同氧化孔径的905 nm VCSEL器件,获得的最大斜率效率为1.12 W/A,最大转换效率为44.8%.此外,探究了氧化孔径对VCSEL的远场和光谱特性的影响.这种具有高功率转换效率的905 nm VCSEL器件为激光雷达的小型化、低成本化提供了良好的基础数据.  相似文献   

17.
808nm无铝大功率量子阱激光器   总被引:2,自引:1,他引:1       下载免费PDF全文
王立军  武胜利 《发光学报》1997,18(4):360-362
报导了用低压(LP)-MOCVD方法研制出808nm无铝InGaAsP/InGaP/GaAs单量子阱分别限制异质结构大功率激光器(SCHSQW),器件外微分量子效率为65%,阈值电流密度400A/cm2,特征温度120℃,对于100μm条宽、1000μm腔长宽接触激光器,室温连续输出光功率达1瓦以上,并讨论了无铝大功率激光器的阈值、光谱等特性.  相似文献   

18.
准相位匹配PPKTP晶体连续倍频13 mW绿光输出   总被引:1,自引:0,他引:1  
采用高压脉冲电场极化,通过电光效应实时监控、倍频通光二维监控等手段的应用,制备出周期为9μm、长为8 mm、宽为3 mm、厚为1 mm的周期极化KTiOPO4晶体(PPKTP);倍频通光实验中,当波长1064 nm的基频光功率为1 W时,得到了功率为13.5 mW的532 nm连续倍频绿光输出,单通倍频转换效率为1.35%,归一化转换效率为1.69%/(W.cm),接近理论最大值。  相似文献   

19.
通过小角度V形腔外腔光谱合束将两个808 nm半导体激光器合束,提高半导体激光器的输出功率及光束质量。两个合束单元分别工作在795.8 nm和800.5 nm,将所获光束通过非线性光学方法进行频率转换。外腔光谱合束实现输出功率为6.5 W快慢轴光束质量M2=2.2×18.5的光束输出,所获光束慢轴M2因子相较于自由运转单管激光器提高了30%,外腔光谱合束效率为83%。基于所获光源,实现了半导体激光器小角度V形腔外腔光谱合束和频,获得输出功率为18.3 mW波长为401.0 nm的蓝光输出,和频效率为0.28%。  相似文献   

20.
为改善940 nm大功率InGaAs/GaAs半导体激光器输出特性,通过模拟计算了非对称波导层及限制层结构的光场分布,并参照模拟制作了非对称结构半导体激光器器件。采用低压金属有机物气相沉积(LP-MOCVD)生长技术,获得了低内吸收系数的高质量外延材料,通过实验数据计算得到激光器材料内吸收系数仅为0.44mm~(-1)。进而通过管芯工艺制作了条宽100μm、腔长2000μm的940 nm半导体激光器器件。25℃室温10 A直流连续(CW)测试镀膜后器件阈值电流251 mA,斜率效率1.22 W/A,最大输出功率达到9.6 W,最大光电转化效率超过70%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号