首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Large‐scale torsional actuation occurs in twisted fibers and yarns as a result of volume change induced electrochemically, thermally, photonically, and other means. A quantitative relationship between torsional actuation (stroke and torque) and volume change is here introduced. The analysis is based on experimental investigation of the effects of fiber diameter and inserted twist on the torsional stroke and torque measured when heating and cooling nylon 6 fibers over the temperature range of 26–62 °C. The results show that the torsional stroke depends only on the amount of twist inserted into the fiber and is independent of fiber diameter. The torque generated is larger in fibers with more inserted twist and with larger diameters. These results are successfully modeled using a single‐helix approximation of the twisted fiber structure. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1278–1286  相似文献   

2.
The vibrational self-consistent field (VSCF) method assumes separability in normal modes in its usual version. However, the method fails in cases such as soft torsional modes which are better treated by angular variables. We develop VSCF equations based on the assumption of wave function separability in internal coordinates. To test the method, simple illustrative applications to small systems are provided: trans-HONO, cis-HONO, H2S2, and H2O2. The code directly uses points from ab initio calculations, and the method proves to be accurate for all types of transitions. For typical torsional transitions, the error in the computed frequency is smaller than that of VSCF in normal coordinates. The wave functions for the torsional mode are compared with the corresponding normal mode wave functions. The differences are substantial. The results are encouraging for extension of the model for large polyatomic systems. Work along these lines is in progress.  相似文献   

3.
 In this article, experimental evidence for the influence that steric interaction and orientational coupling have on the orientation of cellulose fibre dispersed in a particulate matrix is given. The filler coefficient of the fibre suspension is used as a probe to follow the average fibre orientation. It is shown that the fibres do not order into a nematic phase after numerous shear stress steps. From the evolution of the filler coefficient as a function of the time the stress was applied, a rate constant for reorientation was determined. Even in the dilute regime, its value depends on the fibre volume fraction. Results obtained with various fibre and particle sizes have been scaled onto a master curve, where it is shown that the rate of reorientation increases with the fibre–particle size ratio. Received: 5 October 1999 In revised form: 21 December 1999 Accepted: 21 January 2000  相似文献   

4.
Polypyrrole was polymerized on the surface of cellulose fibres using a sequence of fibre impregnation in FeCl3 solutions, thickening and re-dispersion in a pyrrole solution. ζ-Potential and adsorption isotherms of the FeCl3-cellulose systems showed that the adsorption of iron III was associated with the formation of free Fe3+ cations in the impregnation liquor. Moreover, under the test conditions applied, the amount of adsorbed iron III was not sufficient to promote the polymerization of a adequate amount of pyrrole on the fibre surface. Optimization of the polymerization reaction required that the FeCl3 concentration in the impregnation liquor be increased to approximately 1 mol/l with a subsequent decrease of pH to approximately1.8. Based on scanning electron (SEM) micrographs and the low cellulose polymerization degree measured after pyrrole polymerization, we concluded that the decrease in the electric resistance of bulky polypyrrole/cellulose compounds was associated with a not negligible degradation of the cellulose fibres due to acid hydrolysis and the subsequent impossibility to prepare hand sheets with modified fibres due to the insufficient strength of the wet fibre network. The results of this investigation bring into question the use of FeCl3-pyrrole-cellulose systems for the elaboration of conducting paper sheets with good and stable mechanical properties.  相似文献   

5.
UHMWPE viscoelastic fibers show great interest as reinforcement within composites and especially when used in SRPs (Self-Reinforced Polymers). They provide ductility, lightness and recyclability, benefits that glass or carbon fibers cannot provide. It is, therefore, necessary to increase knowledge about the behavior of UHMWPE fibers. Before the thermomechanical characterization of these yarns, an experimental protocol is proposed, validated and it supplements the existing standard. Monotonous, load-unload and creep tensile tests were carried out on Doyentrontex® yarns. Temperature and strain rate dependencies were observed. A time-temperature superposition is used to reconstruct the evolutions of modulus at 0.5%, maximum strength, and strain at break at 23 °C over a wide range of strain rates. The behavior of the yarns studied appears to be complex. Indeed, at low temperatures, a hyperelastic type of behavior, combined with plasticity, predominates whereas a more elasto-viscoplastic one emerges at 100 °C. From creep tests, a time-temperature-stress level superposition leads to the reconstruction of the yarns creep behavior over a long period at the reference temperature 23 °C and the reference stress level, which is 40% of the stress at break in tensile tests at any given test temperature.  相似文献   

6.
Extensive experimental investigation of the wetting processes of fibre/liquid systems during air filtration (when drag and gravitational forces are acting) has shown many important features, including droplet extension, oscillatory motion, and detachment or flow of drops from fibres as airflow velocity increases. A detailed experimental study of the aforementioned processes was conducted using glass filter fibres and H(2)O aerosol, which coalesce on the fibre to form barrel droplets with small contact angles. The droplets were predominantly observed in the Reynolds transition (or unsteady laminar) flow region. The droplet oscillation appears to be induced by the onset of vortexes in the flow field around the droplet as the increasing droplet size increases the Reynolds number. Flow in this region is usually modelled using the classical two-dimensional Karman vortex street, and there exist no 3D equivalents. Therefore to model such oscillation it was necessary to create a new conceptual model to account for the forces both inducing and inhibiting such oscillation. The agreement between the model and experimental results is acceptable for both the radial and transverse oscillations.  相似文献   

7.
Gmez Alvarez E. 《Talanta》2007,72(5):1757-1766
The implementation of an experimental set-up for sampling, and characterisation of parameters related to absorptive sampling solid phase microextraction (SPME) in the EUPHORE photoreactor is described. Toluene was taken as probe compound. Optimisation of the sampling and calibration curves are presented. Equilibrium was achieved in just 30 s due to the good agitation in the chambers and the LOD was 0.24 ppbV. The precision was ±0.02 expressed as relative standard deviation (n = 9). The inter-fibre reproducibility was ±0.03 expressed as relative standard deviation. The effect of the temperature and the sun radiation on absorption in the fibre is also studied using a relative method to calculate the ratio K/K0 (ratio of absorption constants at two different times during the experiment at which temperature and radiation conditions experimented important variations) calculated through known parameters, avoiding in this way the need for external calibrations in the calculation of K. The results showed a difficult to predict dependence of absorption over the combination of temperature and sun radiation and the need to develop sampling systems with absorptive SPME in which sun radiation has no influence. The stability in different conditions of compounds absorbed in the fibre was also subject to study. At room temperature half of the compound absorbed is expected to desorb in 1.21 h. Conversely, when fibres were kept at low temperatures (−86 °C) after 21 days, desorption was negligible.  相似文献   

8.
Regenerated cellulosic fibres undergo a process described as scission-reordering during hydrolysis in solutions of mineral acid. This occurs within disordered polymer regions at lateral crystal interfaces, which are accessible to aqueous agents through the pore spaces and polymer free volume. This process is distinct from that of oligomer-solubilsation, which occurs within disordered polymer regions in series between crystal domains, where no effective template exists for recrystallisation. The degradation of series disorder will have the greatest influence on fibre tensile properties, which fall dramatically even at low levels of hydrolysis. The mechanics of fibrillation are most sensitive to the degradation of lateral disorder, which occurs at a higher rate constant. Soft-touch fabric processing may therefore be possible under conditions where there is a reduced influence on tensile performance. A kinetic model has been proposed to describe the hydrolysis and recrystallisation pathways, which shows that lyocell has longer but thinner crystal domains than viscose or modal fibres, and also a tighter distribution of lateral crystal sizes. Lyocell also has a lower proportion of series disorder and also thinner regions of lateral disorder. This is consistent with the overall greater crystallinity of the original lyocell fibre and the also of the final microscrystalline product.  相似文献   

9.
Almost 50 years ago, the 1950-1960 period witnessed the development of the chemistry underlying most of today’s successful and durable flame retardant treatments for fibres and textiles. In today’s more critical markets in terms of environmental sustainability, chemical toxicological acceptability, performance and cost, many of these are now being questioned. “Are there potential replacements for established, durable formaldehyde-based flame retardants such as those based on tetrakis (hydroxylmethyl) phosphonium salt and alkyl-substituted, N-methylol phosphonopropionamide chemistries for cellulosic textiles?” is an often-asked question. “Can we produce char-forming polyester flame retardants?” and “Can we really produce effective halogen-free replacements for coatings and back-coated textiles?” are others.These questions are addressed initially as a historical review of research undertaken in the second half of the twentieth century which is the basis of most currently available, commercialised flame retardant fibres and textiles. Research reported during the first decade of the twenty first century and which primarily addresses the current issues of environmental sustainability and the search for alternative flame retardant solutions, the need to increase char-forming character in synthetic fibres and the current interest in nanotechnology is critically discussed. The possible roles of micro- and nano-surface treatments of fibre surfaces and their development using techniques such as plasma technology are also reviewed.  相似文献   

10.
Spectral dispersion curves of the refractive indices and birefringence of highly oriented fibres [poly(ethylene 2,6-naphthalene-dicarboxylate) (1000 denier/248 filaments, PEN-Q50M4; PEN), poly(ethylene terephthalate) (PET), Seun yarn (meta-aramid fibres, Teijin Japan; CONEX) and Technora T-240 (1000 denier/667 filaments aramid fibres, Teijin Japan; TECHNORA)] have investigated using the automatic variable-wavelength interferometric (VAWI) technique. This technique is especially recommended for measuring the refractive indices of highly oriented fibres. The polarizabilities per unit volume are calculated for these fibres and the molecular orientation function of PEN and PET are determined. Microinterferograms are given for illustration.  相似文献   

11.
In this paper, it is shown that the interaction responsible for making the series of ‘forbidden' transitions from the state (nτK)=(110) in the ground vibrational (v=0) state to the levels of (122+) in the CH3-rocking vibrational state (v=r) of methanol is ‘Coriolis' resonance and not ‘Fermi' resonance as proposed in a recent publication. This has been established from the J-dependence of the observed perturbed energy spacings between the two interacting pairs from high resolution spectroscopic analysis. The J-dependence clearly follows the classic ‘Coriolis' interaction matrix elements for ΔK=2, which would not occur if the interaction were due to ‘Fermi' resonance.  相似文献   

12.
Herein, the effect of twist on physical properties such as tensile, hairiness and wicking behavior of our reported tri-component elastic-conductive composite yarns (t-ECCYs) was systematically studied. Experimental results revealed that an optimum twist value provided the maximum yarn strength. A positive relation between extension at break and twist was observed. Significant differences in the tensile behavior is established. Two-parameter Weibull distribution and boxplots were used to quantify the variation in yarn strength. The role of spinning geometry and variation in twists on hair formation was highlighted, with an increase in twist reducing yarn hairiness. In addition, t-ECCYs with higher twist exhibited poorer wickability, and there was a gradual increase of the equilibrium height of yarn under extension. Importantly, the results demonstrated that the Laughlin-Davies wicking model was valid for t-ECCYs under tested conditions. It is promising that the as-fabricated t-ECCYs is prerequisite for the next wave of smart yarns and large-scale stretchable protective devices, such as superstretchable helical-structured yarn heaters and elastic electromagnetic shielding fabrics.  相似文献   

13.
14.
Pereira J  Pereira J  Câmara JS 《Talanta》2011,83(3):899-906
A headspace solid-phase microextraction (HS-SPME) procedure based on five commercialised fibres (85 μm polyacrylate - PA, 100 μm polydimethylsiloxane - PDMS, 65 μm polydimethylsiloxane/divinylbenzene - PDMS/DVB, 70 μm carbowax/divinylbenzene - CW/DVB and 85 μm carboxen/polydimethylsiloxane - CAR/PDMS) is presented for the characterization of the volatile metabolite profile of four selected Madeira island fruit species, lemon (Citrus limon), kiwi (Actinidia deliciosa), papaya (Carica papaya L.) and Chickasaw plum (Prunus angustifolia). The isolation of metabolites was followed by thermal desorption gas chromatography-quadrupole mass spectrometry (GC-qMS) methodology. The performance of the target fibres was evaluated and compared. The SPME fibre coated with CW/DVB afforded the highest extraction efficiency in kiwi and papaya pulps, while in lemon and plum the same was achieved with PMDS/DVB fibre. This procedure allowed for the identification of 80 compounds, 41 in kiwi, 24 in plums, 23 in papaya and 20 in lemon. Considering the best extraction conditions, the most abundant volatiles identified in kiwi were the intense aldehydes and ethyl esters such as (E)-2-hexenal and ethyl butyrate, while in Chicasaw plum predominate 2-hexenal, 2-methyl-4-pentenal, hexanal, (Z)-3-hexenol and cyclohexylene oxide. The major compounds identified in the papaya pulp were benzyl isothiocyanate, linalool oxide, furfural, hydroxypropanone, linalool and acetic acid. Finally, lemon was shown to be the most divergent of the four fruits, being its aroma profile composed almost exclusively by terpens, namely limonene, γ-terpinene, o-cymene and α-terpinolene. Thirty two volatiles were identified for the first time in the fruit or close related species analysed and 14 volatiles are reported as novel volatile metabolites in fruits. This includes 5 new compounds in kiwi (2-cyclohexene-1,4-dione, furyl hydroxymethyl ketone, 4-hydroxydihydro-2(3H)-furanone, 5-acetoxymethyl-2-furaldehyde and ethanedioic acid), 4 in plum (4-hydroxydihydro-2(3H)-furanone, 5-methyl-2-pyrazinylmethanol, cyclohexylene oxide and 1-methylcyclohexene), 4 in papaya (octaethyleneglycol, 1,2-cyclopentanedione, 3-methyl-1,2-cyclopentanedione and 2-furyl methyl ketone) and 2 in lemon (geranyl farnesate and safranal). It is noteworthy that among the 15 volatile metabolites identified in papaya, 3-methyl-1,2-cyclopentanedione was previously described as a novel PPARγ (peroxisome proliferator-activated receptor γ) agonist, having a potential to minimize inflammation.  相似文献   

15.
In the present work it has been demonstrated, by measurements of their density and air oxidation resistance, that different sorts of carbon fibres grown from a gaseous stage, vapour grown carbon fibres (VGCF), present a duplex structure. By means of these two experimental techniques, structural differences between both constituent phases of this kind of fibres have been determined. It has been proved that the catalytic phase or nucleus presents higher level of crystalline perfection than the pyrolytic or cortical phase. This is corroborated by the fact that thin VGCF show better mechanical properties than thick fibres.In this way, it has been possible to determine the mean nucleus diameter of a batch of VGCF, and to established a mathematical expression, of the rule of mixtures type, for their density.  相似文献   

16.
The viscosity and temperature dependences of TICT formation for two dialkylaminobenzonitriles are separated by comparing time-resolved fluorescence measurements with pressure and with temperature variation in glycerol and glycerol triacetate. From the identical decay behaviour observed and from the measured activation energies being smaller than that of solvent mobility it can be concluded that TICT formation occurs without intrinsic barrier in this case.  相似文献   

17.
The porous structure of the interior of papermaking fibres is a well-known important property of the fibres. Changes of this structure will influence tensile and burst strength of paper formed from the fibres and a change in pore size of the pores within the fibre wall is also important for the ability of molecules to diffuse in and out of the fibre wall. Relevant examples of this latter effect are the removal of lignin during cooking and the addition of performance chemicals during papermaking. In this paper, pore sizes and the pore size distribution of unbleached softwood fibres have been studied. A well-characterised fibre material consisting of laboratory cooked spruce and pine pulp of various lignin contents was used. Pore size and pore size distribution were measured by studies of the relaxation behaviour of 2H in fibres saturated with 2H2O. Beside this the total and surface charge of the fibres were also measured together with strength properties of papers from unbeaten fibres. For both pulps, there is a maximum in pore radius at a yield around 46%. Calculations of fibre wall volume from water retention values and yield levels show that there is a discontinuity in pore radius as a function of the fibre wall volume around a yield of 51%. It is suggested that this discontinuity is caused by the breakdown of the hemicellulose/lignin matrix within the fibre wall at this yield level. The strength of the papers formed from the fibres shows a correlation with the surface charge of the fibres. Based on the change in surface charge with yield and the change in total charge with yield, this correlation is suggested to be due to an opening up of the external part of the fibre wall. This stresses the importance of the chemical composition and physical structure of the outer layer of the fibre wall.  相似文献   

18.
Abstract

The four-component reaction among arylhydrazine, alkyl acetoacetate derivatives, alkyl isocyanides, and dialkyl acetylenedicarboxylates, leading to the formation of dialkyl 2-[(Z)-(alkylamino)(3-alkyl-5-oxo-1-phenyl-1,5-dihydro-4H-pyrazol-4-ylidene)methyl] fumarates is described. The structure of target compounds was confirmed using X-ray diffraction study. These pyrazolone derivatives contain a highly twisted exocyclic 1,3-butadiene moiety with skew (??=?87°) geometry.  相似文献   

19.
The undissolved fibre and gel residuals that had not completely reacted to form fully dissolved carboxymethyl cellulose (CMC) ID the production of CMC were studied to clarify the reactivity of wood components ID the pulp. The undissolved residuals, the pulp and the CMC were therefore analysed on the fibre level, the cell-wall level and the chemical composition level. The results may be interpreted as indicating that the presence of undissolved residuals ID the CMC was not due to any chemical difference. The undissolved residuals were shown to consist mainly of swollen cell wall parts and some whole wood cells, mainly thick-walled compression wood and summerwood cells. They react more slowly ID the mercerisation and etherification, probably because of a greater diffusion resistance due to their larger dimensions or to a more dense structure. These cells are assumed to be less accessible for chemical penetration, but they may also contain supramolecular structures that slow down the CMC reaction.  相似文献   

20.
An oxidative chemical vapor deposition (OCVD) process was used to coat flexible textile fiber (viscose) with highly conductive polymer, poly (3,4‐ethylenedioxythiophene) (PEDOT) in presence of ferric (III) chloride (FeCl3) oxidant. OCVD is a solvent free process used to get uniform, thin, and highly conductive polymer layer on different substrates. In this paper, PEDOT coated viscose fibers, prepared under specific conditions, exhibited high conductivity 14.2 S/cm. The effects of polymerization conditions, such as polymerization time, oxidant concentration, dipping time of viscose fiber in oxidant solution, and drying time of oxidant treated viscose fiber, were carefully investigated. Scanning electron microscopy (SEM) and FT‐IR analysis revealed that polymerization of PEDOT on surface of viscose fiber has been taken place and structural analysis showed strong interactions between PEDOT and viscose fiber. Thermogravimetric analysis (TGA) was employed to investigate the amount of PEDOT in PEDOT coated viscose fiber and interaction of PEDOT with viscose fiber. The effect of PEDOT coating on the mechanical properties of the viscose fiber was evaluated by tensile strength testing of the coated fibers. The obtained PEDOT coated viscose fiber having high conductivity, could be used in smart clothing for medical and military applications, heat generation, and solar cell demonstrators. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号