首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mechanical performance of SFRP depends on various factors (fiber fraction, geometry, etc.), among which the fiber orientation is difficult to predetermine, yet it needs to be considered during product design and manufacturing. This is important for parts with complex geometry and varying wall thicknesses, since variations in fiber orientation within the part, if not properly analyzed, may lead to unexpected or premature part failure. In our research, we investigate the effect of fiber orientation on the long-term time-dependent behavior in shear for polyphenylene sulfide with 40 wt% glass fiber reinforcement. Our results show that fiber orientation influences the magnitude of creep compliance (load transfer from matrix to fiber), however, the time-dependency and time-temperature relationship remains the same, regardless of the fiber orientation, suggesting that the composite time-dependency and thermal properties is solely governed by the matrix material.  相似文献   

3.
Study on residual stresses of thin-walled injection molding   总被引:1,自引:0,他引:1  
The residual stresses of the thin-walled injection molding are investigated in this study. It was realized that the behavior of residual stresses in injection molding parts was affected by different process conditions such as melt temperature, mold temperature, packing pressure and filling time. The layer removal method was used to measure the residual stresses at a thin-walled test sample by a milling machine. This simple method was demonstrated to be adequate for a thin-walled part. Moldings under different conditions were investigated to study the effects of the process conditions on the residual stresses of a thin-walled product using the elastic and viscoelastic models. The mold temperature was found to affect the size of the core region and residual stress on the surface layer of a thin-walled part in our studied range. The packing pressure was insensitive to the residual stresses in the studied high-pressure range. The residual stresses predicted by the viscoelastic model are about the same level and trend as compared to the experimental measurement.  相似文献   

4.
Residual stress and birefringence distributions are determined in polycarbonate samples obtained by quenching in a specially designed apparatus and by injection molding. The molecular orientation is distinguished from the thermally and pressure-induced residual stresses. The birefringence in the quenched samples is found to be positive and almost constant, independent of the quench temperature, but varying strongly with initial quench temperature between 150 and 180°C. The residual stress level, as determined by layer removal and sectioning, is very low. The birefringence distribution is mainly due to a tensile equibiaxial orientation induced by transient cooling stresses built up above Tg. The samples which are injection-molded with a high injection speed and without packing pressure display the same birefringence distribution as the quenched samples, apart from a local maximum beneath the surface due to the shear flow during filling. Apart from the flow during filling and packing, the frozen-in molecular orientation in injection-molded samples is also induced by transient thermal stresses present during vitrification. The birefringence from thermally induced orientation was found to be of comparable magnitude to that from flow-induced orientation. For a correct prediction of molecular orientation the thermal strains above Tg must therefore be included in simulation programs. Because of the low level of thermal stresses, the application of a packing pressure will lead to tensile stresses at the surface in general. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
The objective of his work is to show that pineapple leaf fiber (PALF) can be used successfully to reinforce a high melting polymer such as nylon. One of the most important barriers to the utilization of lignocellulosic materials in polymer matrix composites is their limited temperature resistance. As a consequence, they are mostly used to reinforce low melting temperature polymers such as polyethylene and polypropylene as well as polystyrene. However, this work reveals that PALF can be used to reinforce nylon. This is because of its very low lignin content. Nylon 6/66 composites containing a fixed amount of 20 wt % PALF in the form of short and fine fibers were prepared with a laboratory twin screw extruder and then injection molded. The mechanical properties of three types of PALF, i.e. untreated, alkaline- and silane-treated, were studied. Significant improvements in modulus and heat distortion temperature were obtained. The crystalline structure and orientation in the injected composites were investigated with synchrotron wide angle x-ray scattering (WAXS). It was found that both PALF and nylon crystallites oriented well along the flow direction and this is the key factor for the improvements observed.  相似文献   

6.
Huang FC  Chen YF  Lee GB 《Electrophoresis》2007,28(7):1130-1137
This study presents a new packaging method using a polyethylene/thermoplastic elastomer (PE/TPE) film to seal an injection-molded CE chip made of either poly(methyl methacrylate) (PMMA) or polycarbonate (PC) materials. The packaging is performed at atmospheric pressure and at room temperature, which is a fast, easy, and reliable bonding method to form a sealed CE chip for chemical analysis and biomedical applications. The fabrication of PMMA and PC microfluidic channels is accomplished by using an injection-molding process, which could be mass-produced for commercial applications. In addition to microfluidic CE channels, 3-D reservoirs for storing biosamples, and CE buffers are also formed during this injection-molding process. With this approach, a commercial CE chip can be of low cost and disposable. Finally, the functionality of the mass-produced CE chip is demonstrated through its successful separation of phiX174 DNA/HaeIII markers. Experimental data show that the S/N for the CE chips using the PE/TPE film has a value of 5.34, when utilizing DNA markers with a concentration of 2 ng/microL and a CE buffer of 2% hydroxypropyl-methylcellulose (HPMC) in Tris-borate-EDTA (TBE) with 1% YO-PRO-1 fluorescent dye. Thus, the detection limit of the developed chips is improved. Lastly, the developed CE chips are used for the separation and detection of PCR products. A mixture of an amplified antibiotic gene for Streptococcus pneumoniae and phiX174 DNA/HaeIII markers was successfully separated and detected by using the proposed CE chips. Experimental data show that these DNA samples were separated within 2 min. The study proposed a promising method for the development of mass-produced CE chips.  相似文献   

7.
Due to its low cost and high efficiency, injection molding is used for the mass production of many plastic products nowadays. However, when processing low-viscosity plastic materials, i.e., materials with an excellent fluidity, an inappropriate setting of the clamping force often results in a poor appearance and dimensional accuracy of the final product. Thus, operators usually take the upper limit of the clamping force as a default in setting up the machine in an attempt to improve the quality of the molded parts. However, such an approach shortens the machine and mold life, increases the energy consumption, and leads to poor air venting. Consequently, more scientific methods for determining the clamping force setting are required. To meet this demand, the present study proposes a clamping force search methodology for determining the optimal clamping force setting of a hydraulic cylinder clamping injection molding machine in the processing of low-viscosity plastics such as thermoplastic polyurethane (TPU) and polypropylene (PP). Based on the characteristic extracted from the sensing tie-bar elongation profile under different clamping force settings, a regression analysis on these data points is implemented to seek for an optimal clamping force. The experimental results show that for an injection molding machine with a hydraulic cylinder clamping mechanism, the effect of the mold temperature on the clamping force is sufficiently small to be ignored, which has an impact on the toggle type clamping unit. Furthermore, compared to traditional methods, the optimal clamping force obtained using the method proposed in the present study results in a significant improvement in the yield rate. Overall, the results confirm that for low-viscosity polymer resins, the optimal clamping force determined using the proposed method results in a higher and more consistent quality of the molded parts than that achieved using the proper clamping force setting for ordinary-viscosity resins.  相似文献   

8.
The morphological feature of microparts evolved during micro‐injection molding may differ from that of the macroparts prepared by conventional injection molding, resulting in specific physical properties. In this study, isotactic polypropylene (iPP) microparts with 200 µm thickness and macroparts with 2000 µm thickness were prepared, and their morphological comparison was investigated by means of polarized light microscopy (PLM), scanning electron microscopy (SEM), differential scanning calorimeter (DSC), and wide‐angle X‐ray diffraction (WAXD). The results presented some similarities and differences. PLM observations showed that the through‐the thickness‐morphology of micropart exhibited a similar “skin–core” structure as macropart, but presented a large fraction of shear layer in comparison to the macropart which presented a large fraction of core layer. The SEM observation of shear layer of micropart featured highly oriented shish‐kebab structure. The micropart had a more homogeneous distribution of lamellae thickness. The degree of crystallinity of the micropart was found to be higher than that of the macropart. High content of β‐crystal was found in micropart. The 2D WAXD pattern of the core layer of macropart showed full Debye rings indicating a random orientation, while the arcing of the shear layer indicates a pronounced orientation. The most pronounced arcing of the micropart indicates the most pronounced orientation of iPP chains within lamellae. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
This paper describes the influence of dynamic tension/compression loading on notched and unnotched nylon specimens fabricated by Injection Molding (IM) and Selective Laser Sintering (SLS). The main objective of this work is to analyze and describe the differences in material structure and fatigue properties of as-built nylon parts produced by IM and SLM from the same polyamide 12 powder. The differences in dimensional quality, density, surface roughness, crystal structure and crystallinity are systematically measured and linked to the mechanical fatigue properties. The fatigue properties of the unnotched SLS specimens are found to be equal to those of the unnotched IM specimens. The presence of pores in the sintered samples does not lead to rapid failure, and the microvoid coalescence failure mechanism is delayed. The notched specimens show more brittle failure and increased fatigue resistance which is caused by local notch-strengthening. The results enable improved understanding of the difference in material structure and fatigue behavior of selective laser sintered and injection molded polyamide.  相似文献   

10.
In contrast to solid parts fabricated through conventional injection molding (CIM), foamed parts manufactured via foam injection molding (FIM) exhibit substantial variations in mechanical properties, which are attributed to differences in the cellular structure. In this study, parts with different cellular structures are fabricated via FIM, during which the gas dissolution and desorption processes are controlled by subjecting the gas‐laden melt to reciprocating compression and expansion operations. The results suggest that the cell density can be drastically improved by rapidly decreasing the pressure caused by the mold opening and that the cell orientation obviously occurs in the direction perpendicular to the mold‐opening direction. Moreover, the cell density and cellular orientation can be adjusted by utilizing appropriate mold opening and closing operations, leading to improvements in the resultant ultimate mechanical properties. In particular, the foamed samples fabricated with controlled mold opening‐closing operations exhibit excellent tensile strength and strain‐at‐break, indicating that samples containing a high density of cells oriented along the tensile test direction facilitate the formation of superductility and an increase in tensile strength. Hence, a method that combines FIM with batch foaming has been proposed for improving the cellular structure and controlling the cellular orientation.  相似文献   

11.
A concept for taking a sample from a polymer melt stream plus the direct processing of this melt to specimen is presented. Therefore, a melt sampling and direct injection molding (MSIM) device was developed. Process parameters were studied and the set-up was implemented successfully. Using the MSIM device, different thermoplastics were processed and provided specimen characterized. The mechanical material properties from samples of the MSIM process show a good consistency compared with data from conventional processes. The MSIM device can be used in production processes for quality control, e.g. color or mechanical properties, as well as in the field of research and development to reduce development cycles.  相似文献   

12.
Non-destructive measurement of the cavity pressure is of great importance for monitoring, optimizing and controlling the injection molding process. However, to date, almost all researches have relied on embedded pressure probes, and holes have to be drilled in the molds. In this paper, a non-destructive cavity pressure measurement method is proposed based on ultrasonic technology and a Gaussian process. According to the pressure-volume-temperature profile, the cavity pressure of a given polymer can be treated as a function of the density and the temperature. Moreover, the cavity pressure is significantly affected by injection hydro-cylinder pressure. Ultrasonic technology is employed to detect the variation of polymer density during injection molding. The Gaussian process is adopted to model the functional relationships between the cavity pressure, the ultrasonic signal, the mold temperature and the injection hydro-cylinder pressure. Experimental results show that the proposed Gaussian process regression model has a better modeling performance than that of the neural network regression model, and the proposed measurement method is capable of measuring the cavity pressure at different processing conditions and measurement locations during injection molding. In general, the proposed method offers several advantages: (1) non-destructive, (2) flexible, (3) no wires, (4) low-cost, and (5) health and safety, so it has great application prospects in injection molding.  相似文献   

13.
The microstructure and molecular orientation distribution over both the length and the thickness of microinjection‐molded linear low‐density polyethylene with a weld line were characterized as a function of processing parameters using small‐angle X‐ray scattering and wide‐angle X‐ray diffraction techniques. The weld line was introduced via recombination of two separated melt streams with an angle of 180° to each other in injection molding. The lamellar structure was found to be related to the mold temperature strongly but the injection velocity and the melt temperature slightly. Furthermore, the distributions of molecular orientation at different molding conditions and different positions in the cross section of molded samples were derived from Hermans equation. The degree of orientation of polymeric chains and the thickness of oriented layers decrease considerably with an increase of both mold temperature and melt temperature, which could be explained by the stress relaxation of sheared chains and the reduced melt viscosity, respectively. The level of molecular orientation was found to be lowest in the weld line when varying injection velocity, mold temperature, and melt temperature, thus providing an effective means to identify the position of weld line induced by flow obstacles during injection‐molding process. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1705–1715  相似文献   

14.
Large amount of work has been published on the isotacticity–properties relationship of isotactic polypropylene (iPP). However, the stereo‐defect distribution dependence of morphology and mechanical properties of iPP injection molding samples is still not clear. In this study, two different isotactic polypropylene (iPP) resins (PP‐A and PP‐B) with similar average isotacticity but different stereo‐defect distribution were selected to investigate the morphology evolution and mechanical properties (tensile and notching) of their injection molding samples using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), 2D wide angle X‐ray diffraction (2D‐WAXD), and scanning electron microscope (SEM). The results of DMA showed that the molecular movement ability of PP‐A (with less uniform distribution of stereo‐defect) was stronger than that of PP‐B, meanwhile the analysis of DSC and SEM suggested that after injection molding, smaller spherullites, and crystals with higher perfection had formed in the specimens of PP‐A. The resulting of tensile properties of PP‐A were found to be better than that of PP‐B. The results of morphology evolution by SEM observation and 2D‐WAXD showed that PP‐A is more likely to occur interspherulite deformation and can disperse the tensile stress more efficiently, and therefore, its crystal structure can withstand a greater force when tensile stress is applied. On the other hand, PP‐B has larger spherulites and boundaries, and low perfection of lamellaes, and the intraspherulte deformation tend to take place. It is easier for the crystal of PP‐B to be broken up and reoriented along the tensile direction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
张杰 《高分子科学》2015,33(11):1625-1632
Isotactic polypropylene(i PP) samples obtained by pressure vibration injection molding(PVIM) and conventional injection molding(CIM) were studied by polarized-light microscopy(PLM), respectively. It was found that the alternating bright and dark banded spherulites were generated in the transitional region of PVIM parts. It is the first time that the banded spherulites of isotactic polypropylene were observed in polymer processing. What's more, the banded spherulites were proved to be constituted of ?-form crystal by hot stage polarized-light microscopy(HT-PLM) and wide angle X-ray diffraction(WAXD). Morphology of the banded spherulites was also studied by scaning electronical microscopy(SEM).  相似文献   

16.
The viscoelastic behavior of multiwall carbon nanotube (MWCNT) reinforced polyamide 66 (PA 66) was evaluated to investigate the effect of CNT content and loading frequency on dynamic moduli (i.e. storage modulus E′ and loss modulus E″) and damping factor tanδ. PA 66/CNT disk samples with five different CNT contents ranging from 3 wt % to 15 wt % were manufactured by injection molding. Testing was performed over the frequency range of 0.1–100 Hz at room temperature. Dynamic mechanical analysis results show that the mechanical properties are highly functions of tested frequency and the improvement on loss and storage modulus of nanocomposites with the addition of CNT is highly dependent on tested frequencies. The variability in loss modulus is significantly higher than the variability in the storage modulus indicating the correlation of loss modulus with uncertainties present in nanocomposite microstructure while storage modulus is essentially independent of microstructure for a given reinforcement content.  相似文献   

17.
In this study, good dispersion status of graphite in a nonpolar, intractable polymer, i.e. polypropylene (PP), was realized in melt processing by using a specific dynamic packing injection molding (DPIM) technique. The exfoliation extent of graphite increased remarkably from the skin zone to the core zone of the molded part, as confirmed by combination of WAXD, SEM and TEM analyses, indicating an accelerated exfoliation occurred during the DPIM processing. This phenomenon is due to decreased melt flow channel and increased melt viscosity as the solidification takes place from the wall into the center, which leads to greatly increased shear force. The good dispersion of graphite results in obvious reinforcements of both tensile strength and impact strength by adding moderate amount of graphite. The present study proposes a promising route for realizing the large-scale fabrication of structural parts of polymer/exfoliated-graphite nanocomposites with excellent mechanical properties.  相似文献   

18.
The interfacial interaction and orientation of filler play important roles in the enhancement of mechanical performances for polymer/inorganic filler composites. Shear has been found to be a very effective way for the enhancement of interfacial interaction and orientation. In this work, we will report our recent efforts on exploring the development of microstructure of high density polyethylene (HDPE)/mica composites in the injection‐molded bars obtained by so‐called dynamic packing injection molding (DPIM), which imposed oscillatory shear on the melt during the solidification stage. The mechanical properties were evaluated by tensile testing and dynamic mechanical analysis (DMA), and the crystal morphology, orientation, and the dispersion of mica were characterized by scanning electron microscopy and two‐dimensional wide‐angle X‐ray scattering. Compared with conventional injection molding, DPIM caused an obvious increase in orientation for both HDPE and mica. More importantly, better dispersion and epitaxial crystallization of HDPE was observed on the edge of the mica in the injection‐molded bar. As a result, increased tensile strength and modulus were obtained, accompanied with a decrease of elongation at break. The obtained data were treated by Halpin–Tsai model, and it turned out that this model could be also used to predict the stiffness of oriented polymer/filler composites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
There is an increasing demand to produce injection molded thermoplastic parts with high performance and more uniform microstructure. In this study, an injection mold with dynamic mold temperature control was developed to create a thermo-mechanical environment in which a high mold temperature and slow cooling rate were retained. Two-dimensional wide angle X-ray diffraction (2D-WAXD) and polarized optical microscopy (POM) studies were carried out to investigate the morphological distribution of isotactic polypropylene (iPP) through the depth. Due to the fast relaxation of polymer chains at a high temperature, the macroscopic orientated structure of iPP in conventional injection molding was eliminated, that is transited from the hierarchical morphology distribution to a more homogeneous formation. A homogeneous appearance without layer boundary was shown and many radial spherulites with loosely packed lamellae distributed uniformly throughout the sample.  相似文献   

20.
This research investigates the luminance and the brightness field distribution of the microstructure of a light guiding plate (LGP) by micro injection molding (MIM) and micro injection‐compression molding (MICM). The process of manufacturing a LGP includes photo‐etching, MIM, MICM, and optical field measurement. The results show that the luminance of microstructure of LGPs produced using MICM is better than those made using MIM. The results also indicate that the most important processing parameter is the mold temperature for the luminance distribution of the LGP whether made by MIM or MICM. The maximum luminance of the LGP is 80 Nit (cd/m2) on micro molding. The brightness field distribution of the LGP made using MICM is more uniform than those made using MIM for the same processing parameters. MICM is a more suitable process than MIM for the fabrication of a LGP on a backlight panel (BLP). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号