首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在WINDOWS环境下,采用面向对象程序设计方法,建立了HIRFL两台回旋加速器SFC和SSC的圈图测量软件及相应的探针控制系统,实现了数据采集、探针移动、圈图显示、图形打印,数据保存等多项功能,使设备工作更稳定可靠,大大提高了加速器运行和调束工作效率。  相似文献   

2.
强流质子加速器束流剖面分布及束晕测量系统设计   总被引:2,自引:0,他引:2       下载免费PDF全文
 针对一台用于加速器驱动洁净核能源系统研究、高占空比的强流质子加速器,开展强流质子直线加速器束晕产生的研究工作,其中的束流剖面分布特别是束晕部分测量的束流诊断系统是研究工作的核心内容。束晕的产生在低能量段尤其重要,且对整个直线加速器的设计有重要影响。介绍了研究束晕增长的束流输运线和测量系统的布局设计,并根据所研究的加速器束流的情况进行束流剖面探测器和束晕测量的设计和预研,包括丝靶材料的模拟计算和选择、机械驱动的控制系统设计和研究、前端模拟电路的设计和仿真模拟、以及整个系统与EPICS和VxWorks的计算机控制接口等。  相似文献   

3.
兰州重离子加速器(HIRFL)冷却存储环的实验环(CSRe)提供高品质的束流用于高精度的质量测量、原子物理等实验研究,实现束流参数的准确测量是进行物理实验的前提保障。目前,CSRe加速器控制系统已升级为EPICS架构。介绍了基于EPICS的束流诊断控制系统现状,并利用升级后的控制系统测量了束流相关参数。其中,束流位置系统能够测量注入束流的逐圈位置信息,测量结果发现束流在注入过程中存在一定程度的震荡,影响注入效率。流强测量系统通过高分辨的数据采集卡实现对DCCT信号的精确测量,同时增加了D事例触发功能。升级后的控制系统,可以实现束流参数的测量,并集成于加速器控制系统的EPICS CSS界面。  相似文献   

4.
针对北京正负电子对撞机改造工程(BEPC II)直线加速器束流位置测量电子学系统故障率上升这一现状,结合BEPC II直线加速器束流参数以及BPM电子学ADC芯片带通采样的需求,设计了隔离度高、幅相一致性好的数字BPM射频前端电子学模块。数字BPM电子学系统采用MicroTCA 4.0系统架构,以FPGA作为主控制器,基于EDA软件开发设计。重点介绍了射频前端电子学模块中射频功率放大器、数字可调衰减器、带通滤波器等设计和实验室及在线测试结果。BEPC II对撞模式下,使用正电子束流,完成电子学系统在线测试,x方向位置测量精度约为38.46 μm,y方向位置测量精度约为26.16 μm,其测量精度和系统稳定性优于商用模拟BPM电子学模块,能够满足BEPC II直线加速器束流位置测量需求。  相似文献   

5.
为满足重离子治癌加速器装置(HIMM)回旋加速器引出段束流流强的测量需求,设计了新的束流流强测量系统,该系统利用积分电流变换器(ICT)及锁相放大器等配套电子学,能够实现束流流强的非拦截实时测量。文中首先分析了中能束线(MEBT)束流流强的测量需求,并对设计方案进行了实验室系统分析和在线束流强测量。实验室结果表明,锁相放大器的幅度和相位响应一致性满足测量需求。由于ICT对束流流强的测量是相对测量,先使用法拉第筒对ICT进行在线标定;标定前先对法拉第筒(FC)(20μA档位)和ICT系统的流强分辨在线测量,分别为6.45 nA和5.163 nA。由于束流抖动的影响,测量的束流的稳定性约90 nA,其对应的相对测量误差约8%,ICT系统响应时间小于1 ms。测量结果表明,该系统满足物理测量需求。回旋加速器高频系统参数变化引起ICT标定系数变化的工作将在进一步工作中展开。  相似文献   

6.
介绍了束流损失测量系统探测器的选型、前置放大电子学的功能、数据采集系统的硬件配置及本地站显示界面,着重介绍了本系统在加速器不同能量段的束流调试中的应用。DTL低能段成功观测到了束流损失,针对RCS段脉冲高功率设备,对本系统的干扰提出了解决方案,便于加速器调束时区分干扰与束损,针对RTBT微脉冲大信号的束损进行了积分展宽,满足数据采集系统带宽需求。  相似文献   

7.
70MHz连续波质子束脉冲化装置   总被引:1,自引:0,他引:1  
为了进行强流回旋加速器关键技术研究, 中国原子能科学研究院建立了一个强流回旋加速器综合试验装置. 中国原子能研究院将在这个回旋加速器综合试验装置上建立强流脉冲化实验装置, 目标是实现几十至百keV量级的强流束的脉冲化. 具体是将70MHz连续波负氢束脉冲化为重复频率1—8MHz, 脉冲宽度约为10ns的脉冲质子束. 脉冲化装置将主要包括束流切割器和聚束器两大系统. 聚束器采用频率为70.487MHz的双间隙单漂移栅网结构, 可以将直流束压缩到±30°的回旋加速器高频接受相宽之内. 束流切割器将采用频率为2.2MHz的正弦波, 切割后的脉冲宽度将小于8ns, 最后得到的脉冲束的重复频率为4.4MHz.  相似文献   

8.
为了进行强流回旋加速器关键技术研究,中国原子能科学研究院建立了一个强流回旋加速器综合试验装置.中国原子能研究院将在这个回旋加速器综合试验装置上建立强流脉冲化实验装置,目标是实现几十至百keV量级的强流束的脉冲化.具体是将70MHz连续波负氢束脉冲化为重复频率1-8MHz,脉冲宽度约为10ns的脉冲质子柬.脉冲化装置将主要包括束流切割器和聚束器两大系统.聚束器采用频率为70.487MHz的双间隙单漂移栅网结构,可以将直流束压缩到±30.的回旋加速器高频接受相宽之内.束流切割器将采用频率为2.2MHz的正弦波,切割后的脉冲宽度将小于8ns,最后得到的脉冲束的重复频率为4.4MHz.  相似文献   

9.
针对加速器驱动次临界系统(ADS)中强流质子直线加速器,即ADS注入器Ⅱ,设计了采用现场可编程门阵列(FPGA)切束技术的加速器快保护控制系统。当系统检测到束流异常故障信号时能快速切断束流,并上传故障信息,方便故障排查和后期数据分析。该控制器基于FPGA设计,可实现光纤通信、串口通信、逻辑电平信号输出等功能。其中,光纤通信功能用于控制斩波器电源快速切断束流;串口通信用于实时传输设备状态信息;逻辑电平信号输出用于控制继电器产生开关量信号去远程控制保护设备,以防止运行设备的损害。通过现场运行测试,切束响应时间在10 s之内,达到安全设计要求。  相似文献   

10.
介绍了兰州重离子加速器(HIRFL)束流相位测量装置。该装置的研制基于双平衡混频原理,利用了高频信号混频滤波技术,具有较高的测量灵敏度。通过安装在加速器中的容性感应探针探测等时性回旋加速器束流相位历程,对于调束中获取等时场信息并对磁场进行优化,从而提高引出束流强度和束流品质是非常重要的。该装置通过等时场相位优化实验,检验了相位测量数据的可靠性,测量精度达到±0.5°。  相似文献   

11.
介绍了中国散裂中子源(CSNS)直线加速器(Linac)采用的自主研制的束流变压器(BCT)系统。根据CSNS Linac的束流参数、加速器管道的横向孔径和纵向空间,专门设计了BCT进行束流宏脉冲流强的测量。在CSNS Linac试运行阶段成功地测量到了负氢粒子束流的宏脉冲信息,给调束运行提供了有利的保障和支撑。  相似文献   

12.
为改善传统的束流位置测量电子学系统受电子学通道非线性、温度漂移和系统噪声等因素对位置测量精度带来的影响,介绍了一种新型的基于导频技术的数字束流位置测量电子学系统。该系统硬件包括模拟信号采集电子学、数字信号处理电子学和PTC(导频信号耦合)模块;软件包括顶层应用软件和底层驱动,束流信号与导频信号在耦合电路中耦合后,经电子学处理,在FPGA中计算得到归一化后的束流位置信息。实验室测试结果分析,经导频信号归一化处理后能够有效改善各通道随温度变化的现象,束流位置漂移从4.5 μm改善至0.5 μm,分辨率从57.25 nm提升到13.37 nm,并且进行导频信号开关实验更加直观观测导频信号对束流位置测量的在线校正效果。设计的基于导频信号的数字束流位置测量(DBPM)电子学可以高效、实时地实现对加速器束流位置的在线校正,提升电子学系统的实时分辨率性能。  相似文献   

13.
在多脉冲强流直线感应加速器(LIA)的测控和诊断系统中,电子束的在线测试数据处理是重要的组成部分。多脉冲强流电子束在线测试数据处理系统是集测试仪器、计算机和工作站等组成的工业以太网,以及实现测试网络配置、测试仪器的通信及控制、数据采集、束流强度和束质心位置计算、显示以及存储等功能为一体的专用软件。多脉冲强流电子束采用基于电阻环束流位置检测器(BPM)的束流测试线路,根据束线上每个BPM测试得到的四个象限点的原始电压信号波形,以及测试线路的结构参数,计算束线上每个PBM位置的束流强度以及束质心位置随时间变化的波形,根据随时间变化的波形数据计算每个BPM位置多个脉冲束流的强度以及束质心位置的统计数据。数据的存储采用SQL和文件系统相结合的方式。这套多脉冲强流电子束在线数据处理系统在多脉冲强流LIA的调试实验中稳定可靠运行,为实验提供有效可靠的数据。  相似文献   

14.
100MeV强流质子回旋加速器设计的引出质子束流强为大于200μA, 并计划提供脉冲束流. 轴向注入系统设计有两条注入线, 即1#和2#注入线. 1#注入线利用负氢束的中性化以解决强流连续束流的注入,为保证达到高中性化程度, 横向聚焦均采用磁元件; 2#注入线的设计目的主要是提供一定流强的脉冲化束流,由于脉冲化负氢束的中性化过程难以建立, 因此, 横向聚焦元件均为静电元件. 两条线合理的结构设计使得注入系统可方便切换运行模式. 采用包含空间电荷力的光学计算程序, 匹配不同中性化程度的注入束流光学特性, 匹配工作的重点在于高达40°的高频相位接收度. 从离子源出口到粒子加速前15圈的连续匹配计算结果表明: 所设计的注入系统可有效地控制束流包络, 减少束流损失; 中心区高的高频接收度使设计的100MeV质子回旋加速器具有加速强流负氢束的能力.  相似文献   

15.
倍频腔法测BEPCⅡ直线加速器的束团长度   总被引:2,自引:1,他引:1       下载免费PDF全文
 阐述了利用倍频腔束团长度监测器测量北京正负电子对撞机二期工程电子直线加速器束团长度的原理,通过两个月的测试和数据采集,测得的束团长度集中在1.4~2.0 mm之间,与理论值1.5 mm基本相符。根据不同时刻的记录,基频腔峰值电压与束流流强探测器BCT3所测流强值近似成正比关系;当大幅改变预聚束器和聚束器参数而束流流强不变时,反映聚束质量的五倍频腔信号也随之大幅改变,而反映流强信号的基频腔信号则变化不大,这些试验结果与理论分析完全一致。  相似文献   

16.
单粒子效应(SEE)加速器地面模拟需要离子束具有较好的均匀度,针对回旋加速器单粒子效应模拟的束流特点,建立了一套以位置灵敏平行板雪崩探测器(Parallel Plate Avalanche Counter,PPAC)为基础的均匀度探测系统并完成了带束测试,对它的结构、工作原理、均匀度获得方法及带束测试结果进行描述。为验证PPAC测量结果准确性,在带束测试过程中,前方同时放置PET膜测量穿过PPAC探测器的粒子分布,与离子径迹测量结果对比,给出PPAC的均匀度的测量误差在5%之内。探测器具有50 mm×50 mm的灵敏面积和小于1 mm的位置分辨,符合单粒子效应实验对束流均匀度测量的要求。  相似文献   

17.
孟鸣  徐韬光  李芳  徐智虹  杨涛  李鹏  孙纪磊 《强激光与粒子束》2019,31(6):065104-1-065104-5
介绍了针对中国散裂中子源(CSNS)的直线到环输运线(LRBT)所设计的条带式束流位置测量(BPM)系统,探头方案以条带式电极为基础进行物理设计及参数优化,并通过机械标定减少机械加工误差,电子学选用商用数据处理方案。此系统在加速器实际运行中有效提供位置信息,对在线测量数据采用奇异值分解(SVD)进行分析,根据分析结果,对束流轨道测量的精度达到预期设计目的,满足物理调束需求。  相似文献   

18.
中国散裂中子源的强流质子加速器采用剥离注入的方式,碳膜将H-剥离两个电子后变成质子,多圈涂抹注入到快循环同步环加速中,并加速至1.6 GeV。为了精确测量剥离膜的剥离效率并研究不同厚度剥离膜的使用寿命,在I-Dump束线上新研发并安装了一套束流流强探测器(H0CT),用于测量未完全剥离的H-和H0(H-被剥离一个电子)粒子。为了测量μA级束流,H0CT弱流强测量系统的研制考虑了外部干扰,配合探头、线缆及电子学低噪声的抗干扰设计,将环境噪声及干扰的影响降至最低,提高信噪比,实现了μA级脉冲电流的测量。  相似文献   

19.
一台新的治癌专用加速器HITFiL正在设计和建造中,其中一台同步加速器为其主加速器,以高紧凑性、高可靠性和低成本为设计目标。同步加速器的注入系统采用剥离注入方式,剥离注入与单圈注入方式相比能达到较高的注入效率,而其造价明显低于多圈注入加电子冷却的注入方式。治癌采用碳粒子束,从ECR离子源产生的C5+离子经过回旋加速器预加速后在同步加速器注入点处剥离成为C6+注入到环里。详细阐述了该注入系统的设计方案,并对整个注入过程进行了计算机模拟。在模拟过程中,对束流的注入效率、束流损失机制和粒子数增益进行了研究,得到了实空间和相空间的粒子分布和发射度增长趋势,得到了满足要求的束流流强。  相似文献   

20.
CSNS RCS注入横向相空间涂抹的研究   总被引:1,自引:0,他引:1  
邱静  唐靖宇  王生  韦杰 《中国物理 C》2007,31(10):942-946
中国散裂中子源(CSNS)加速器系统由80MeV的直线加速器和1.6GeV的快循环同步加速器(RCS)构成. CSNS第一阶段采用H剥离注入方法, 将粒子数累积至1.88×1013. 注入束流被涂抹在较大的横向相空间内, 以减小空间电荷效应. 粒子注入后, 为了降低由空间电荷效果引起的工作点漂移和工作点弥散, 束流分布的均匀性很重要. 引入了评估束流分布均匀性的三个参数. 为了抑制注入过程中束流发射度和束晕的增长, 通过采用三维的模拟程序ORBIT, 对不同的横向相空间涂抹方案进行了比较. 同时还介绍了工作点、注入峰值流强和斩波调制比等因素对注入过程的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号