共查询到20条相似文献,搜索用时 15 毫秒
1.
Compatibility and phase structure of binary blends of poly(lactic acid) and glycidyl methacrylate grafted poly(ethylene octane) 总被引:1,自引:0,他引:1
This work study is the compatibility, phase structure, and component interaction of poly(lactic acid) (PLA) and glycidyl methacrylate grafted poly(ethylene octane) (GMA-g-POE denoted as mPOE) blend by Fourier transform infrared (FTIR) spectra, dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), and wide-angle X-ray diffraction (WAXD), respectively. All the binary blend compositions exhibit two distinct glass transition temperatures corresponding to the mPOE-rich and PLA-rich phases, respectively. Moreover, these two peaks approach each other with increasing mPOE content, indicating partial compatibility between the PLA and mPOE. Chemical reactions between the end carboxyl groups of the PLA and epoxy groups of the mPOE are considered as the driving force of the enhanced compatibility. They lead to an increase in viscosity of the blends and a decrease in the structural symmetry of PLA. This result brings about a decrease in the spherulite growth rate and the degree of crystallinity. Glass transition temperature (Tg) depression of mPOE is attributed to the negative pressure imposed on the dispersed rubber phase, resulting from differential contraction due to the thermal shrinkage mismatch upon cooling from the melt state. The negative pressure in the dispersed particles, in turn, would cause a dilational effect for the matrix ligament between the particles, and therefore increases the ductility and toughness of PLA. 相似文献
2.
Polypropylene/poly(butyl methacrylate)(PP/PBMA) blends were prepared by diffusion and subsequent polymerization of butyl methacrylate(BMA) in commercial isotactic polypropylene(iPP) pellets.The diffusion kinetics,diametrical distribution of PBMA in a pellet and phase morphology of a typical PP/PBMA blend were investigated. 相似文献
3.
Compatibilizing effects for improving mechanical properties of biodegradable poly (lactic acid) and polycarbonate blends 总被引:3,自引:0,他引:3
Jae Bok LeeYun Kyun Lee Gi Dae ChoiSang Wook Na Tae Sung ParkWoo Nyon Kim 《Polymer Degradation and Stability》2011,96(4):553-560
Mechanical, morphological and rheological properties of polycarbonate (PC) and poly (lactic acid) (PLA) blends with compatibilizers have been investigated. Three types of compatibilizers were used: poly(styrene-g-acrylonitrile)-maleic anhydride (SAN-g-MAH), poly(ethylene-co-octene) rubber-maleic anhydride (EOR-MAH) and poly(ethylene-co-glycidyl methacrylate) (EGMA). The maximum value of the mechanical properties such as impact and tensile strengths of the PC/PLA (70/30, wt%) blend before or after hydrolysis was observed when the SAN-g-MAH was used as a compatibilizer at the amount of 5 phr. From the interfacial tension between PC and PLA which was determined from the weighted relaxation spectra using Palierne emulsion model, minimum value of interfacial tension (0.08 mN/m) was observed when the SAN-g-MAH (5 phr) was used. From the morphological studies of the PC/PLA (70/30) blends, the PLA droplet size showed minimum (0.19 μm) at the 5.0 phr SAN-g-MAH. From the results of mechanical, morphological and rheological properties of the PC/PLA (70/30) blend, it is suggested that the SAN-g-MAH is the most effective compatibilizer to improve the mechanical strength of the PC/PLA (70/30) blends among the compatibilizers used in this study, especially at the amount of 5 phr. 相似文献
4.
5.
Poly(lactic acid), PLA, was chemically modified with maleic anhydride (MA) by reactive extrusion. The effect of this modification on molar mass (MM) and acidity was assessed by means of size-exclusion chromatography (SEC) and titration, respectively. PLA MM decreased in the presence of MA solely and of MA and peroxide. Reduction in MM was monitored by the increase in acidity. PLA blends containing poly(butylene adipate-co-terephthalate) (PBAT) were prepared through different mixing protocols, PLA/PBAT, PLA-g-MA/PBAT and PLA/PBAT/MA/peroxide (PLA/PBAT in situ). SEC results and rheological properties revealed reduction in MM and viscosity of the modified blends. PLA/PBAT presented increase in MM and bimodal MM distribution. The calculated interfacial tension was significantly lower for the modified blends, despite the lower average particle area of PLA/PBAT. Surprisingly, the modified blends presented higher yield strength than that predicted by the rule of mixtures, which might indicate interfacial reactions. 相似文献
6.
Some composting and biodegradation effects of physically or chemically crosslinked poly(lactic acid)
Marian ?enkiewicz Rafa? MalinowskiAgnieszka Richert Wanda Sikorska 《Polymer Testing》2012,31(1):83-92
Polylactide (PLA) crosslinked by using both triallyl isocyanurate (TAIC) and electron radiation or using dicumyl peroxide (DCP) was studied with the aim of examining the behaviour of the modified polymer under various environmental conditions. Thus, the polymer samples were subjected to composting in an industrial pile, exposed to proteinase K, or incubated in sea water. The number-average molecular weight (Mn), melt flow index (MFI), crystallinity (χ), tensile strength (σM) and mass loss (in the case of samples treated with proteinase K) were determined. It was found that neat PLA irradiated with high-energy electrons underwent degradation that increased during composting. As a result, the value of Mn of this polymer dramatically decreased. It appeared that PLA crosslinked with TAIC and electron radiation contained, in addition to the crosslinked phase, a phase strongly degraded by this radiation, which facilitated hydrolytic degradation during composting. The σM value of PLA crosslinked with TAIC and electron radiation rapidly decreased during composting, whereas that of PLA crosslinked chemically and composted for three weeks slightly increased. As the electron radiation dose increased, the mass loss of PLA containing TAIC and treated with proteinase K decreased, which indicated that the physical crosslinking of PLA hindered enzymatic degradation of this polymer. Important changes in both neat and physically crosslinked PLA incubated in sea water for nine weeks were not detected. 相似文献
7.
Maria-Beatrice Coltelli Simona Bronco Carlos Chinea 《Polymer Degradation and Stability》2010,95(3):332-341
The blending of PLA with poly(butylene-adipate-co-terephthalate) (PBAT) is a promising strategy to achieve a toughened multiphase material. The blends ductility could be further improved through reactive compatibilization, i.e. inducing the formation of comb PLA-PBAT copolymers during the melt blending. In the present work a non-selective strategy was adopted which consisted in the use of a peroxide, 2,5-Dimethyl-2,5-di(tert-butylperoxy)hexane. The phase morphology development and the final properties (torque, fluidity in the melt, tensile behaviour, thermal and dynamical-mechanical features) of the blends were studied as a function of the peroxide concentration. The elongation at break was improved up to a maximum value thanks to this approach and a corresponding minimum was observed in the value of the dispersed phase diameter. A structural characterization of the macromolecules formed during the reactive process was attempted by using size exclusion chromatography of the blends and comparison with the pure polymers obtained by processing in the presence of the peroxide. 相似文献
8.
Blends of Poly(lactic acid) with Thermoplastic Acetylated Starch 总被引:1,自引:0,他引:1
Blends of poly(lactic acid)(PLA) and thermoplastic acetylated starch(ATPS) were prepared by means of the melt mixing method. The results show that PLA and ATPS were partially miscible, which was confirmed with the measurement of Tg by dynamic mechanical analysis(DMA) and differrential scanning calorimetry(DSC). The mechanical and thermal properties of the blends were improved. With increasing the ATPS content, the elongation at break and impact strength were increased. The elongation at break increased from... 相似文献
9.
Binary blends of poly(l-lactide) (PLLA) and poly(butylene terephthalate) (PBT) containing PLLA as major component were prepared by melt mixing. The two polymers are immiscible, but display compatibility, probably due to the establishment of interactions between the functional groups of the two polyesters upon melt mixing. Electron microscopy analysis revealed that in the blends containing up to 20% of poly(butylene terephthalate), PBT particles are finely dispersed within the PLLA matrix, with a good adhesion between the phases. The PLLA/PBT 60/40 blend presents a co-continuous multi-level morphology, where PLLA domains, containing dispersed PBT units, are embedded in a PBT matrix. The varied morphology affects the mechanical properties of the material, as the 60/40 blend displays a largely enhanced resistance to elongation, compared to the blends with lower PBT content. 相似文献
10.
The effect of tetramethylenedicarboxylic dibenzoylhydrazide (designated here as TMC) on the nonisothermal and isothermal crystallization behavior of PLA was investigated by differential scanning calorimetry (DSC), polarized optical microscopy (POM) and wide angle X-ray diffraction (WAXD). TMC shows excellent nucleating effect on PLA. With the addition of 0.05 wt% TMC, the crystallization half-time of PLA decreases from 26.06 to 6.13 min at 130 °C. The isothermal crystallization data were further analyzed by the Avrami model. The values of the Avrami exponent of the blends are comparable to that of neat PLA, indicating that the presence of TMC does not change the crystallization mechanism of the matrix. The observation from POM and WAXD measurements showed that the presence of TMC increases significantly the nuclei density of PLA but has no discernible effect on its crystalline structure. 相似文献
11.
采用来源于可再生资源的聚醚酰胺弹性体(PEBA)增韧聚乳酸(PLA)制备超韧聚乳酸(PLA/PEBA-GMA)复合材料.为了提高PEBA与PLA之间的相容性,选择极性单体甲基丙烯酸缩水甘油酯(GMA)、共接枝单体乙烯基吡咯烷酮(NVP)及引发剂过氧化二异丙苯(DCP)对PEBA进行接枝改性制备PEBA-GMA.研究了接枝单体组分的用量(m/g)对PLA/PEBA-GMA复合材料性能的影响.研究发现,随着接枝单体组分用量的提高,复合材料的缺口冲击强度逐渐增大,当接枝单体组分GMA,NVP和DCP的用量分别为2.5,2.5和0.25 g时,复合材料的冲击强度高达88.6 kJ/m2,断裂伸长率为164.1%.研究表明,在熔融共混过程中,聚乳酸的端基(—OH和—COOH)与PEBA-GMA上环氧基团发生反应,有效改善两相间的界面相容性,随着接枝单体组分比例的提高,分散相PEBA-GMA的粒子尺寸逐渐减小且分布均匀. 相似文献
12.
Biodegradation of poly(lactic acid) and its nanocomposites 总被引:2,自引:0,他引:2
PLA nanocomposites based on organically modified montmorillonites at 5% w/w loading were prepared by melt blending using an internal mixer and then degraded in a commercial compost. The addition of nanoclays was found to increase the PLA degradation rate, especially for the highest dispersed clay in the polymer matrix. Biodegradation by microorganisms isolated from the compost showed the bacterium Bacillus licheniformis as one of the responsible for PLA biodegradation in compost. It was also found that clays can influence the polymer bacterial degradation depending on their chemical structure and affinity of the bacterium towards the clay. 相似文献
13.
Nanostructured materials based on organically modified montmorillonite (OMMT) and polypropylene (PP)/poly(butylene succinate) (PBS) blend were prepared via melt-mixing of PP, PBS, and OMMT in a batch mixer. The weight ratio of PP and PBS was 70:30, and the OMMT loading varied from 0.5 to 5 wt%. The surface morphologies of unmodified and OMMT-modified blend were studied by field-emission scanning electron microscopy. Results showed that the particle size of the dispersed PBS phase was significantly reduced with the addition of a small amount of OMMT (1.5 wt%). Upon the addition of 5 wt% of OMMT, the domain size of the dispersed PBS phase changed significantly from the unmodified blend, and a homogeneous dispersion of very fine particles of PBS was observed. The degree of dispersion of silicate layers in the blend matrix was characterized by X-ray diffraction and transmission electron microscopy. The improved adhesion between the phases and the fine morphology of the dispersed phase contributed to the significant improvement in the properties and thermal stability of the final nanocomposite materials. On the basis of these results, we describe a general understanding of how the morphology is related to the final properties of OMMT-incorporated PP/PBS blend. 相似文献
14.
Xiuyan Song Xiaojing ZhangHui Wang Fusheng LiuShitao Yu Shiwei Liu 《Polymer Degradation and Stability》2013
Poly(lactic acid) (PLA) was depolymerized by methanol in the presence of a novel catalyst: ionic liquids. It was found that the purification method of the main products in the methanolysis catalyzed by ionic liquids was simpler than that of traditional compounds, such as sulfuric acid. Qualitative analysis indicated that the main product in the methanolysis process was methyl lactate. The influences of experimental parameters, such as the amount of ionic liquids, methanolysis time, reaction temperature, and dosages of methanol on the conversion of PLA, yield of methyl lactate were investigated. Under the optimum conditions, using ionic liquid 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]) as catalyst, results showed that the ionic liquid could be reused up to 6 times without apparent decrease in the conversion of PLA and yield of methyl lactate. The kinetics of the reaction was also investigated. The results indicated that the methanolysis of PLA was a first-order kinetic reaction with activation energy of 38.29 kJ/mol. In addition, a possible catalysis mechanism of the methanolysis of PLA was proposed. 相似文献
15.
Uniaxial deformation of amorphous poly(lactic acid) (PLA) film was performed at 60 °C (around the glass transition temperature). The deformed samples revealed a strain-induced mesophase, and its fraction and thermal stability increased with draw strain. Further annealing was performed in situ at constant length, at the drawing temperature for the films drawn to strains of 100% and 230%. Interestingly, the orientation of amorphous phase relaxed more rapidly for the 100% sample compared with the 230% one. This could be ascribed to the constraint effect of mesophase on the amorphous chains. In addition, the chains of mesophase relaxed slightly for the 100% sample while it retained high orientation for the 230% sample. Meanwhile, the mesophase fraction decreased, and the trend was more significant for the sample drawn to 100%. These effects can be ascribed to the melting of mesophase and the different thermal stabilities of the mesophases. 相似文献
16.
17.
The effect of telechelic liquid natural rubber (TLNR) compatibilizer on natural rubber (NR) modified by melt-blending with poly(lactic acid) (PLA-NR) is studied using infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and notched Izod impact testing to determine the structural, thermal and mechanical properties. Scanning electron microscopy (SEM) is used to relate these properties to the morphology of the blends and fracture surface of the impact samples. Through this, it is revealed that the addition of LNR significantly improves the tensile and impact strength of PLA-NR, with the greatest compatibilization effect achieved with 6 wt% LNR. This improvement is confirmed through FTIR analysis to be due to a chemical interaction between LNR and PLA that improves the phase morphology of the blend. 相似文献
18.
19.
Physical and degradation properties of binary or ternary blends composed of poly (lactic acid), thermoplastic starch and GMA grafted POE 总被引:1,自引:0,他引:1
Qingfeng ShiCong Chen Lei GaoLei Jiao Haiyan XuWeihong Guo 《Polymer Degradation and Stability》2011,96(1):175-182
Binary and ternary blends composed of poly (lactic acid) (PLA), thermoplastic starch (TPS) and glycidyl methacrylate grafted poly (ethylene octane) (GPOE) were prepared using Haake Mixer. The mechanical morphology, thermal properties, water absorption, and degradation properties of the blends were also investigated. The elongation at break and impact strength of the ternary blends were greatly increased by the filling of GPOE. Compared to non-GPOE binary blends, the morphology of ternary blends with GPOE indicated that starch granules melted and there was good compatibility between PLA matrix and TPS. The mechanism and schematic diagram of the reactions in PLA, TPS, and GPOE were proposed and proved by testing and observing the morphology. Moreover, the biodegradation and thermal decomposition were studied through compost testing and thermal gravimetric analysis, respectively. Biodegradation results indicated that the blends have the excellent biodegrade ability. 相似文献
20.
Xiaoqing Zhang Maria Espiritu Alex Bilyk Lusiana Kurniawan 《Polymer Degradation and Stability》2008,93(10):1964-1970
The hydrolytic degradation and the morphological behaviour of a packaging grade of poly(lactic acid) (PLA) were characterized by a series of techniques. During the initial degradation process (stage 1) at a temperature near the glass transition temperature (Tg), the molecular weight of PLA decreased as degradation time increased following a bulk erosion mechanism while the crystallinity increased simultaneously, but no observable weight loss occurred at stage 1. Mainly α-form PLA crystal structure was formed for the crystalline PLA with a low content of d stereo-isomers, but the material displayed a lower regularity, smaller domain size, lower melting temperatures Tm and different motional dynamics as compared to the original PLA with a similar level of crystallinity achieved by annealing. The amorphous PLA with a higher amount of d stereo-isomers also yielded the α crystalline phase as well as stereo-complex crystals at stage 1. When the molecular weight and the crystallinity reached a stable level, PLA started erosion into the degrading aqueous medium. During this stage of degradation (stage 2), the crystalline structure in PLA residues was further modified and both pH and temperature influenced the modification. The degradation at stage 2 was likely to follow a surface erosion mechanism with lactic acid as the major product of the weight loss. Besides the crystallinity effect on the degradation, temperature also played a key role in determining the rate of PLA degradation in both stages. The process was very slow at temperatures below the Tg of PLA but the rate was greatly enhanced at temperatures above the Tg. 相似文献