首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对高温拉伸分离式Hopkinson杆实验技术,通过数值模拟、实验验证以及几种典型材料的高温动态拉伸性能测试相结合的方法,对此实验技术中存在的几个关键问题进行了深入研究。结果表明:对于平板状钩挂式拉伸试样,通过标距段尺寸优化后,应力分布均匀,流动应力曲线与螺纹拉伸试样一致,且应力上升段后没有剧烈跳动;通过精确气动控制,在加载脉冲到来同时,可实现有效的试样快速同步组装和加载;当试样温度为1 200 ℃时,在冷加载杆与高温试样接触以及应力波加载试样的整个过程中,试样平均温度下降约1.3%,而加载杆端温升低于180 ℃。为了验证此实验技术,对3D打印TC4、镍基单晶高温合金DD6进行了最高温度约1 200 ℃时的高温动态拉伸力学性能实验测试。  相似文献   

2.
高温SHPB实验技术及其应用   总被引:4,自引:0,他引:4  
介绍了高温分离式Hopkinson压杆(SHPB)实验方法,建立了一套高温SHPB实验系统,利用该系统研究了温度对某种抗氢钢动态压缩力学性能的影响,实验温度最高达到1000 ℃,应变率为500~1000 s-1。仅对试件进行加温,并利用一套气动装置在加载前快速完成系统的组装,以尽量减小试件中温度分布的不均匀性。研究结果表明:该气动装置可以将加载前杆端与试件的完全接触时间控制在500 ms内;该抗氢钢的温度软化效应很明显,且温度敏感性随温度升高而下降。  相似文献   

3.
朱泽  郭伟国  郭今  杨光 《实验力学》2013,28(3):299-306
为了实现高温环境下材料高应变率动态拉伸实验技术,将分离式Hopkinson杆直接拉伸装置中试样与拉杆的螺纹连接形式变成楔形连接形式,并加装了气动同步装置系统。这样,在对试样加高温时,能使靠近试样的入射和透射杆端处于较低温度。当撞击管向传递法兰运动时,气动同步装置瞬间拖动透射杆和试样,使两者之间的间隙为零,此时沿入射杆传递的入射波同时对试样拉伸加载。经实验验证,此方法可以有效实现材料高温高应变率拉伸加载。  相似文献   

4.
用于测量材料高温动态力学性能的SHPB技术   总被引:1,自引:0,他引:1  
讨论了高温下分离式Hopkinson压杆(SHPB)实验的两种方案:单独加热试样并快速对杆与同时加热试样和杆再修正温度梯度的影响。前者避免了杆被加热但是操作复杂,后者简单稳定。为了分析后者温度梯度的影响设计了一个简化模型,采用数值计算进行修正,提出了精度适当的假设,并且进行了实验验证。测量了试件和杆一起加热时杆上的温度分布,证实计算采用的温度分布是合理的。据此得到的专用于材料高温动态力学性能测试的SHPB数据处理公式简单实用,便于推广使用。  相似文献   

5.
高温分离式Hopkinson压杆技术及其应用   总被引:1,自引:0,他引:1  
郭伟国 《实验力学》2006,21(4):447-453
本文介绍了在分离式Hopkinson压杆装置上通过使用一种气动同步机构,实现对试样进行高温高应变率加载的技术。利用此技术仅对试样加高温度而保持入射杆和透射杆与试样脱离且处在较低温度,到预定温度时,借助气动同步机构使入射杆、透射杆与试样接触并同时实现对试样加载。利用波形抑制技术,仅对试样实现一次加载,入射杆中的后续二次加载波通过反作用质量块吸收。通过这些技术的结合,1)可以进行材料在高温高应变率下应力应变测试;2)可以测试材料在高应变率不同温度下的等温曲线;3)可以间接对材料的塑性功热转换系数进行测试;4)可以进行不同温度高应变率下的中断跳跃试验等。在文中给出了一些典型的试验曲线和结果,并对测试方法和结果进行了分析讨论。  相似文献   

6.
利用SHPB测定高应变率下冰的动态力学行为   总被引:2,自引:0,他引:2  
利用分离式Hopkinson压杆(SHPB)实验装置,在-25和-10℃的低温下,对冰进行了应变率为500~2 000 s-1的动态压缩实验.制作了试样的模具和低温制冷保温装置,满足冰所需要的低温条件.SHPB实验中使用波形整形器消除波形振荡现象,并最大程度地实现恒应变率加载.实验表明,冰的动态应力应变呈非线性关系;在...  相似文献   

7.
大直径SHPB实验中的高温加载技术及其应用   总被引:1,自引:0,他引:1  
为研究材料的高温动态力学行为,提出一套由自主设计的温控系统和100 mm SHPB装置组成的高温SHPB实验系统,采用ANSYS软件对界面热传导及其对实验结果的影响进行了计算分析,论证了该实验技术的可靠性,并对混凝土的高温动态力学性能进行了研究。结果表明:在大直径合金钢材质SHPB装置上对混凝土等热惰性材料进行高温冲击实验,冷接触时间临界值为1.00 s,本文中提出的高温加载技术可将冷接触时间控制在0.50 s以内,实验技术可靠;同一加载速率下,随着温度从常温升到1 000 ℃,高温混凝土的动态应力应变曲线呈现出塑性变化趋势,动态抗压强度先提高后降低,动态峰值应变则不断增大。  相似文献   

8.
刘苗苗  郭伟国  周平 《实验力学》2014,29(2):181-188
针对SHPB试验中的波传播衰减弥散问题,基于杆自由端撞击的波传播系数法试验原理,选取Φ100mm PA66尼龙杆为典型Hopkinson压杆,依据SHPB试验中获取试样应力-应变曲线的二波法,对原位测试试验中从加载试样传来的反射波弥散进行修正研究,获得入射杆反射波传播系数;同理,对透射杆获取透射波传播系数。根据修正后的实际反射波和透射波历程,获得试样的应力-应变曲线。通过比较分析,此方法合理可靠。  相似文献   

9.
李克武  赵锋  傅华 《爆炸与冲击》2015,35(6):846-851
浇铸类炸药由于质地软、波阻抗及波速都很低,通过传统SHPB实验方法无法得到准确的应力应变数据。透射杆信号幅值过低、试样应力平衡均匀性不高以及大应变加载引起的入射波反射波重叠失效,是进行浇铸类炸药SHPB实验的难点所在。本文中对传统SHPB实验方法进行改进,在试样两端面加装石英晶体应力计,引入石英计所获得的应力数据与应变片测得数据共同对试样应力应变状态进行计算。该方法可以提高透射信号幅值,提供试样大应变加载,避免了入射波反射波重叠导致的信号失效问题,修正了SHPB实验过程中的应力时空不均匀性的影响,提高了实验结果的可靠性。利用改进后的实验方法对典型浇铸类炸药进行了实验研究,得到了较准确的应力应变曲线。  相似文献   

10.
将红外瞬态测温装置引入SHPB冲击实验,确定了不同材料试件的温度标定曲线,并实时测量了冲击下Al合金和伪弹性TiNi合金试样的表面温度。结果表明,2种试样温度变化都经历了加载过程的温度升高,主要不同在于卸载过程,Al合金卸载过程中温度保持最大加载温度不变,而TiNi合金试样卸载过程中温度降低,这反映了2种材料不同的物理变形过程和温度变化机制。直接红外测温的实验结果与根据能量守恒理论计算的温度较好吻合,说明采用的红外测温方法实时测量冲击瞬态温度是可行的。  相似文献   

11.
为研究实时高温作用对花岗岩冲击力学特性的影响,以川藏铁路色季拉山施工区域加里东期花岗岩为研究对象,利用分离式霍普金森杆(SHPB)及同步箱式电阻炉,对20~800 ℃实时高温下的花岗岩试件进行冲击压缩试验,分析高温作用及加载应变率对试件破碎特征、动态抗压强度及能量吸收情况的影响,基于粉晶X射线衍射分析矿物成分变化与花岗岩动力学强度的内在关联。研究表明:20~400 ℃高温试件以脆性劈裂破坏为主,碎片形态呈纺锤形,两端尖锐,而600 ℃高温试件以塑性破坏为主,形状趋于圆钝;试件峰值应力随温度升高具有先增大后减小的变化趋势,200 ℃时达到强度阈值,随后持续降低;单位体积岩石耗散能与加载应变率呈线性正相关关系,与温度呈二次函数关系,与峰值应力呈指数关系,拟合效果良好;石英、云母和长石三种主要矿物成分的含量波动、相态变化等因素共同导致花岗岩动力学强度在200 ℃后逐步劣化。  相似文献   

12.
平琦  马芹永  袁璞 《爆炸与冲击》2013,33(6):655-661
运用一维应力波理论,分析了弹性应力波在分离式Hopkinson压杆(SHPB)实验中的传播过程,推 导出试件和压杆中应力分布相关计算公式。探讨了有关因素对试件应力平衡时间的影响规律,发现试件应力 平衡时间受试件/压杆广义波阻抗比和入射加载升时的影响显著,而不受试件/压杆截面积比和入射加载应力 幅值的影响。结合岩石SHPB实验,计算分析了不同入射加载应力幅值在不同入射加载升时情况下,试件达 到应力平衡时的应变变化特征,并提出了降低试件在应力平衡时的应变控制方法,使试件在未达到断裂应变 之前达到应力平衡,以保证实验的有效性。得出的结论对岩石类脆性材料SHPB实验方案设计具有一定的 参考意义。  相似文献   

13.
本文中提出单轴双向加载分离式霍普金森压杆(bidirectional-load split Hopkinson compression bar,BSHCB),即在传统的分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)的基础上增加另一个对称的入射波,两边的入射波同时且对称地对试样进行动态加载。根据一维应力波传播理论,推导出单轴双向加载分离式霍普金森杆的数据处理公式。通过数值模拟分析发现,所推导的数据处理公式可以用于计算单轴双向加载实验中试样的工程应力、工程应变和工程应变率。此外,单轴双向对称加载不仅可缩短试样内部应力均匀化的过程,而且可以提高试样应变率。  相似文献   

14.
采用改进的SHPB方法对泡沫铝动态力学性能的研究   总被引:5,自引:1,他引:5  
本文改进了传统的分离式霍布金森压杆(SHPB)技术,采用夹在透射杆中的PVDF压电计直接测量透射杆中的应力时程.同时,采用输入波形整形技术,通过调整加载波形,使试样加载过程中保证均匀变形及应力平衡.利用此改进了的SHPB技术对泡沫铝进行了高应变率下的动态压缩实验.实验结果表明:泡沫铝的动态应力应变曲线具有泡沫材料的应力应变曲线的“三阶段”特征(elastic region,collapse region and densification region),并且应变率对其力学性能影响明显.  相似文献   

15.
对传统的分离式Hopkinson压杆装置加以改进,设计了一种长杆直接撞击Hopkinson杆的实验方案,检测出低波阻抗材料在高温动态加载下的应力均匀性。对轻质泡沫铝材料的实验表明,在同一撞击速度下,温度越高,试件两端的应力均匀性越差,增加温度与提高撞击速度均会导致泡沫铝材料冲击端与支撑端的应力不均匀性。根据高温下应力均匀性的实验结果,确定高温下试件均匀变形对应的冲击速度,再通过传统的分离式Hopkinson压杆实验得出泡沫铝在高温动态下的力学性能。  相似文献   

16.
在进行SHPB系统高温实验时,波导杆常常与试件被同时加温,从而在波导杆中产生温度梯度。为了消除波导杆中温度梯度的影响,有研究人员利用传热学原理来对测量波形进行修正。本文利用一套自动组装装置,实验前对试件加热并自动保温,波导杆则置于加热炉外,实验时进行瞬态组装,由此避免了导杆温度梯度对波形的影响。本文介绍了自动组装原理和过程,比较了在200℃时导杆和试件同时加热,与采用自动组装所产生的透射波形的差异。同时应用ABQUS进行了接触热传导分析,比较了“冷接触时间”在40ms~500ms时试件上的温度分布,计算结果表明:自动组装条件下“冷接触时间”在400ms以内,试件温度不均匀可控制在10%以内。  相似文献   

17.
采用SHPB(split Hopkinson pressure bar)实验技术测量了3种不同尺寸纯铁试样的动态压缩应力应变关系,根据实验结果提出一个经验模型,定量分析了SHPB实验中压杆/试样表面接触变形对应变测量的影响。分析表明,在轴向应力平衡条件下,表面的接触变形对弹性段的应变测量影响显著;对塑性段应变测量的影响与试样的强化模量和长度相关,当试样强化模量较大而长度较小时,这种影响将不可忽略,可根据影响量的经验分析模型对应变进行修正。  相似文献   

18.
采用传统分离式Hopkinson压杆进行M型试样的动态拉伸实验,可避免试样与杆的连接问题,但该方法并未得到发展和验证。本文中,采用有限元数值分析和实验方法,对M型试样动态拉伸实验进行分析和改进。结果表明:(1)改进的封闭M型试样,可以增强试样整体刚度,有效减少试样畸变引起的附加弯矩对拉伸标段的影响,方便通过Hopkinson压杆加载实现一维拉伸变形;(2)采用试样刚度系数修正法,可消除M型试样整体结构的弹性变形对测试的影响,精确获得试样拉伸标段的塑性应变;(3)高加载率下,建议采用波形整器加载,可显著减少试样结构引起的载荷震荡现象、改善两端的应力平衡,获得准确的动态拉伸应力应变曲线,实现5 900 s?1甚至更高应变率下的动态拉伸实验。研究方法可为M型试样拉伸实验设计和应用提供参考。  相似文献   

19.
为研究温度、加载速率、纤维掺量对玄武岩纤维增强混凝土(BFRC)动态压缩强度和冲击韧度的影响,利用?100 mm分离式霍普金森压杆(SHPB)装置,对经历不同温度作用后的BFRC进行冲击加载实验。结果表明:高温后BFRC的动压强度及冲击韧度在同一温度下随平均应变率的上升近似线性增大;温度的升高总体上导致BFRC在同一加载速率下的动压强度及冲击韧度减小、应变率敏感性减弱;同一工况下,BFRC的动压强度和冲击韧度较素混凝土普遍提高,且当纤维体积掺量为0.2%时强韧化效果相对最佳。由此可见,高温后BFRC的冲击压缩特性受温度、加载速率、纤维掺量的综合作用影响,掺入玄武岩纤维可以有效降低高温后BFRC的损伤劣化程度。  相似文献   

20.
SHPB实验中端面摩擦效应研究   总被引:10,自引:0,他引:10  
选取硅橡胶、聚氨酯泡沫、Comp.B炸药、PBX-HMX(97%)炸药以及6061-T6铝合金五种材料试样,对分离式霍普金森压杆(SHPB)实验技术中的端面摩擦效应进行了研究。实验结果表明,SHPB实验技术中的端面摩擦效应与材料的性质相关。另外,基于各向同性弹性理论,运用能量守恒法对SHPB实验中的端面摩擦效应进行了机理分析,研究表明,材料泊松比、端面摩擦系数、试样长径比、轴向应变是SHPB实验中影响端面摩擦效应的四个因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号