首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Several investigators have found that there is a significant effect of surface orientation on pool boiling performance and mechanisms, when a pure liquid is boiled over tubular heating surfaces. However, there is no similar study reported in literature for pool boiling of nanoparticle suspensions. This paper investigates the effect nanoparticles, suspended in pure liquids, can have on nucleate pool boiling heat transfer at various surface orientations. Systematic experiments were conducted on a smooth tube (average surface roughness 48 nm) of diameter 33 mm and length 170 mm at various inclinations (0°, 45° and 90°). Electro-statically stabilized water-based nanoparticle suspensions containing alumina nanoparticles (primary average sizes 47 nm and 150 nm) of concentrations 0.25%, 1% and 2% percent by weight were used. It has been found that there is a significant effect of surface orientation on the heat transfer performance. Horizontal orientation gave maximum heat transfer and the heating surface, when inclined at 45°, gave minimum heat transfer. Further, it was observed that surface–particle interaction and modified bubble motion can explain the behavior.  相似文献   

3.
High speed visualizations and thermal performance studies of pool boiling heat transfer on copper foam covers were performed at atmospheric pressure, with the heating surface area of 12.0 mm by 12.0 mm, using acetone as the working fluid. The foam covers have ppi (pores per inch) from 30 to 90, cover thickness from 2.0 to 5.0 mm, and porosity of 0.88 and 0.95. The surface superheats are from −20 to 190 K, and the heat fluxes reach 140 W/cm2. The 30 and 60 ppi foam covers show the periodic single bubble generation and departure pattern at low surface superheats. With continuous increases in surface superheats, they show the periodic bubble coalescence and/or re-coalescence pattern. Cage bubbles were observed to be those with liquid filled inside and vented to the pool liquid. For the 90 ppi foam covers, the bubble coalescence takes place at low surface superheats. At moderate or large surface superheats, vapor fragments continuously escape to the pool liquid.  相似文献   

4.
The processes of the phase change in boiling occur at the solid–liquid interface by heat transfer from a solid heating surface to the boiling liquid. The characteristic features of the heating surfaces are therefore of great interest to optimize the design of evaporators. The microstructure with all its peaks and cavities influences directly the wetting and rewetting conditions of the heated surface by the boiling liquid and hence bubble formation and heat transfer. The roughness structures of different evaporator copper tubes with 8 or 25 mm diameter are characterized quantitatively with regard to the cavities offered to nucleation. The surfaces of the heating elements are sandblasted by different means resulting in a stochastic microstructure. The surfaces are investigated by a three-dimensional contactless roughness measurement technique combining the stylus technique with the near field acoustic microscopy. The method opens the possibility to obtain results according to standard for practical applications and additionally delivers detailed information about the three-dimensional shape of each cavity within the surface investigated. The analysis of the microstructure implies the total number of cavities, their local and size distribution calculated by the method of the envelope area. The results of the surface analysis are linked to those of heat transfer and bubble formation discussed in a contribution by Kotthoff and Gorenflo.  相似文献   

5.
A study was carried out to observe bubble nucleation and site deactivation mechanisms under equilibrium pool boiling of liquids on single sites. The experiments were conducted with benzene, ethanol, and their mixtures on single sites made of glass. These mechanisms were filmed using a cine camera as the temperature of the boiling liquid was decreased in programmed steps. The experiments showed that the deactivation of a bubble nucleation site in the surface occurred by progressive condensation of vapor within it until the volume of vapor became equal to or smaller than the volume of a spherical bubble of diameter equal to that of the site. Based upon these experimental observations, a site deactivation mechanism is proposed for heterogeneous pool boiling and stability criteria are developed for single cylindrical cavities. The effect of relevant parameters on depth-to-diameter ratio of the sites is also determined.  相似文献   

6.
The challenges that microchannel flow boiling technology faces are the lack of understanding of underlying mechanisms of heat transfer during various flow boiling regimes and a dearth of analytical models that can predict heat transfer. This paper aims to understand flow boiling heat transfer mechanisms by analyzing results obtained by synchronously captured high-speed flow visualizations with local, transient temperature data. Using Inverse Heat Conduction Problem (IHCP) solution methodology, the transient wetted surface heat flux and temperature as well as heat transfer coefficient are calculated. These are then correlated with the visual data. Experiments are performed on a single microchannel embedded with fast response temperature sensors located (630 µm) below the wetted surface. The height, width and length of the microchannel are 0.42 mm, 2.54 mm and 25.4 mm respectively. De-ionized, de-gassed water is used as the working fluid. Two heat fluxes are tested at each of the mass fluxes of 182 kg/(m2s) and 380 kg/(m2s). Because of vapor confinement, slug flow is observed for the tested conditions. The present study provides detailed insights into the effect of various events such as passage of vapor slug, 3-phase contact line, partial-dry-out and liquid slug on transient heat transfer coefficient. Transient heat transfer coefficient peaks when thin film evaporation mechanism is prevalent. The peak value is influenced by the distance of bubble incipience as well as downstream events obstructing the flow. Heat transfer coefficient during the passage of liquid slug and 3-phase contact line were relatively lower for the tested experimental conditions.  相似文献   

7.
Quantitative measurements are obtained from high-speed visualizations of pool boiling at atmospheric pressure from smooth and roughened surfaces, using a perfluorinated hydrocarbon (FC-77) as the working fluid. The boiling surfaces are fabricated from aluminum and prepared by mechanical polishing in the case of the smooth surface, and by electrical discharge machining (EDM) in the case of the roughened surface. The roughness values (Ra) are 0.03 and 5.89 μm for the polished and roughened surfaces, respectively. The bubble diameter at departure, bubble departure frequency, active nucleation site density, and bubble terminal velocity are measured from the monochrome movies, which have been recorded at 8000 frames per second with a digital CCD camera and magnifying lens. Results are compared to predictions from existing models of bubble nucleation behavior in the literature. Wall superheat, heat flux, and heat transfer coefficient are also reported.  相似文献   

8.
An experimental study was carried out to investigate the effects of heat transfer surface orientation and the solid–liquid contact angle on the boiling heat transfer and critical heat flux (CHF) in water pool boiling using a smooth heat-transfer surface under atmospheric pressure. The orientation angle was ranged from 0° (up-facing horizontal position) to 180° (down-facing horizontal position) with a pace of 45°. The three kinds of heat transfer surfaces having different solid–liquid contact angles were the normal surface with a contact angle of 55°, the hydrophilic surface with a contact angle of 30° and the superhydrophilic surface with a contact angle of 0°. The experimental results indicate that orientation and contact angle have complex, coupling effects on heat transfer and CHF. A predicting correlation for the CHF which takes the effects of both orientation and contact angle into account is established. The predicting correlation agrees reasonably well with the experimental data.  相似文献   

9.
SO2 gas is injected into the different pure liquids using new innovative method via meshed tubes. Many experiments have been performed to investigate the influence of gas injection process on the pool boiling heat transfer coefficient of pure liquids around the horizontal cylinder at different heat fluxes up to 114 kW m?2. Results demonstrate that presence of SO2 gas into the vapor inside the bubbles creates a mass transfer driving force between the vapor phase inside the formed bubbles and liquid phase and also between the gas/liquid interfaces. Local turbulences and agitations due to the gas injection process around the nucleation sites leads the pool boiling heat transfer coefficient to be dramatically enhanced. Besides, some of earlier well-known correlations were unable to obtain the reasonable values for the pool boiling heat transfer coefficients in this particular case. Therefore, the most accurate correlation among the examined correlations was modified to estimate the pool boiling heat transfer coefficient of pure liquids. Experimental data were in a good agreement with those of obtained by the new modified correlation with absolute average deviation of 10 %.  相似文献   

10.
Experiments were performed to study the spatio-temporal temperature variation underneath growing bubbles on a thin platinum heating foil in saturated and subcooled nucleate pool boiling of water at atmospheric pressure. The transient wall temperature distributions were recorded with spatial resolution of 40 μm by a high-speed infrared camera at intervals of 1 ms, synchronised with a high-speed video camera to record bubble motion. Examples are presented of the transient distributions of wall temperature, heat flux and heat transfer coefficient underneath bubbles growing with the fast and slow bubble detachment mechanisms in saturated and subcooled pool boiling. Comments are made on the evidence for and against particular mechanisms of heat transfer.  相似文献   

11.
Boiling heat transfer on a horizontal circular copper tube in an acoustical field is investigated experimentally and the relation between the liquid cavitation, the boiling and the micro bubble radii are analyzed theoretically. The results show that cavitation bubbles have an important influence on the nucleation, growth and collapse of vapor embryo within cavities on the heat transfer surface and that the enhancement of boiling heat transfer by acoustic cavitation mainly depends on whether the vapor embryo is activated by the cavitation bubbles to initiate boiling.  相似文献   

12.
In literature it is generally supposed that under terrestrial conditions the driving force in natural, nucleate boiling heat transfer is namely buoyancy caused by earth gravity, which is expressed in the empirical correlations for technical applications. However, experiments in microgravity performed during the past three decades demonstrate unanimously that up to a medium level heat flux the overall heat transfer in pool boiling is nearly independent from gravity. We refer and discuss in this paper on results of experiments performed with various liquids and liquid states and also using various heater geometries on mission platforms which provide low gravity for short and long periods. Beside the measurements of the experimental parameters to determine the heat transfer, we observed the macroscopic boiling process itself with movie films and videos in order to study the bubble dynamics. From these records we learned about the mechanisms of heat and vapour bubble transport, about the interaction between solid heater, superheated liquid, and vapour without gravity or other external force only generated by the bubbles themselves, and we observed significant details about the boiling process not recognized so far. These findings are essential for a better understanding of the complex physical process; and therefore they are important for the formulation of empirical correlations, and in future for numerical simulations to predict properly boiling heat transfer for technical applications.  相似文献   

13.
The inception process of nucleation in explosive boiling systems is theoretically investigated. With the effect of pulse heating or sudden cooling, the temperature distribution near the surface during explosive boiling is calculated. The liquid near the wall can maintain a stable layer induced by strong attractive force, and there exists maximum supersaturation beyond this stable layer. As the surface temperature and temperature gradient are high enough, the critical distance of maximum supersaturation can be larger than the radius of critical bubble, and the homogeneous nucleation will dominate the inception boiling process. For explosive boiling induced by pulse heating, homogeneous nucleation forms after a short time; while homogeneous nucleation can dominate the initial explosive boiling induced by sudden cooling.  相似文献   

14.
The heat transfer and bubble formation is investigated in pool boiling of propane. Size distributions of active nucleation sites on single horizontal copper and steel tubes with different diameter and surface finishes have been calculated from heat transfer measurements over wide ranges of heat flux and selected pressure. The model assumptions of Luke and Gorenflo for the heat transfer near growing and departing bubbles, which were applied in the calculations, have been slightly modified and the calculated results have been compared to experimental investigations by high speed video techniques. The calculated number of active sites shows a good coincidence for the tube with smaller diameter, while the results for the tube with larger diameter describe the same relative increase of the active sites. The comparison of the cumulative size distribution of the active and potential nucleation sites demonstrates the same slope of the curve and that the critical radius of a stable bubble nuclei is smaller than the average cavity size.  相似文献   

15.
An experimental investigation was carried out to study the augmentation of heat transfer in saturated pool boiling of a liquid water layer on a heated horizontal stainless steel plate by roughing the surface and/or covering it with a single layer of stainless steel screen. The results were presented in terms of the boiling curves. Effects of various parameters – the surface roughness, liquid level and size of the stainless steel mesh on the boiling heat transfer were examined in detail. The measured data clearly indicated that a lowering of the liquid level from 60 to 5?mm in water depth causes heat transfer reduction. Roughing the surface was found to sig- nificantly enhance the heat transfer. Use a layer of metal screen to cover the heated surface was shown to substantially augment the heat transfer especially for a shallow water layer if the mesh size is comparable with the bubble departure diameter. Covering the rough surface with the metal mesh, however, reduced the heat transfer.  相似文献   

16.
A method is developed to capture the distribution of surface temperature while simultaneously imaging the bubble motions in diabatic flow boiling in a horizontal minichannel. Liquid crystal thermography is used to obtain highly resolved surface temperature measurements on the uniformly heated upper surface of the channel. High-speed images of the flow field are acquired simultaneously and are overlaid with the thermal images. The local surface temperature and heat transfer coefficient can be analyzed with the knowledge of the nucleation site density and location, and bubble motion and size evolution. The horizontal channel is 1.2 mm high × 23 mm wide × 357 mm long, and the working fluids are Novec 649 and R-11. Optical access is through a machined glass plate which forms the bottom of the channel. The top surface is an electrically heated 76 μm-thick Hastelloy foil held in place by a water-cooled aluminum and glass frame. The heat loss resulting from this construction is computed using a conduction model in Fluent. The model is driven by temperature measurements on the foil, glass plate and aluminum frame. This model produces a corrected value for the local surface heat flux and enables the computation of the bulk fluid temperature and heat transfer coefficient along the channel. The streamwise evolution of the heat transfer coefficient for single-phase laminar flow is compared to theoretical values for a uniform-flux boundary condition. Examples of the use of the facility for visualizing subcooled two-phase flows are presented. These examples include measurements of the surface temperature distribution around active nucleation sites and the construction of boiling curves for locations along the test surface. Points on the curve can be associated with specific image sequences so that the role of mechanisms such as nucleation and the sliding of confined bubbles may be discerned.  相似文献   

17.
An experimental study of saturated pool boiling from a single artificial nucleation site on a polished copper surface has been performed. Isolated bubbles grow and depart from the artificial cavity and the bubble dynamics are recorded with a high speed camera. Experimental results are obtained for bubble growth, departure and vertical rise both with and without the application of an electric field between an upper electrode and the boiling surface. As detailed in a previous paper from the same research group the high spatial and temporal resolution of the video sequences facilitated the development of a baseline experimental bubble growth law which predicts the bubble volumetric growth characteristics for a range of surface superheats at atmospheric pressure. The presence of an electric field has been found to positively augment the convective heat transfer over that of buoyant natural convection. Further to this, for high electric field strengths, the bubble shape, volumetric growth characteristics and bubble rise are different from that of the baseline cases. These results provide compelling evidence that electric fields can be implemented to alter the bubble dynamics and subsequent heat transfer rates during boiling of dielectric liquids.  相似文献   

18.
A semi-empirical model for pool boiling over porous surfaces is presented. The pressure drop across the porous surface is estimated using Darcy?'s law. The significance of the latent heat flux contribution for highly porous surfaces is examined. Two nucleation factors are defined and correlated in terms of measurable quantities using literature data. An expression for the total heat flux in terms of the wall superheat, pore geometry and the physical properties of the liquid is presented. The present model matches well with literature data on pool boiling over porous surfaces, both flat surfaces and tubes from four different sources, thus validating the present approach.  相似文献   

19.
Experiments were conducted to study the effect of tube inclination on nucleate pool boiling heat transfer for different tube diameters and surface roughness values. The results show that as the tube is tilted from the vertical to the horizontal, the temperatures at the top and bottom (with respect to circumference) increase and decrease, respectively. The increase and decrease is such that they almost compensate for each other, resulting in very little variation of the average heat transfer coefficient with tube inclination. The increase in bubble sliding length at the bottom wall and decrease in bubble sliding length at the top wall are thought to be the reasons for this behaviour. Experiments have been conducted with water, ethanol and acetone at atmospheric pressure, to confirm similar effects of inclination irrespective of fluid property.  相似文献   

20.
Subcooled pool boiling of Al2O3/water nanofluid (0.1 vol%) was investigated. Scanning electron microscopy and energy dispersive X-ray spectroscopy were used to observe surface features of the wire heater where nanoparticles had deposited. A layer of aggregated alumina particles collected on the heated surface, where evidence of fluid shear associated with bubble nucleation and departure was “fossilized” in the fluidized nano-porous surface coating. These structures contain evidence of the fluid forces present in the microlayer prior to departure and provide a unique understanding of boiling phenomena. A unique mode of heat transfer was identified in nanofluid pool boiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号