共查询到20条相似文献,搜索用时 6 毫秒
1.
During manned space missions, an environmental control and life-support system (ECLSS) is employed to meet the life-supporting requirements of astronauts. The ECLSS is a type of hierarchical system, with subsystem—component—single machines, forming a complex structure. Therefore, system-level conceptual designing and performance evaluation of the ECLSS must be conducted. This study reports the top-level scheme of ECLSS, including the subsystems of atmosphere revitalization, water management, and waste management. We propose two schemes based on the design criteria of improving closure and reducing power consumption. In this study, we use the structural entropy method (SEM) to calculate the system order degree to quantitatively evaluate the ECLSS complexity at the top level. The complexity of the system evaluated by directed SEM and undirected SEM presents different rules. The results show that the change in the system structure caused by the replacement of some single technologies will not have great impact on the overall system complexity. The top-level scheme design and complexity evaluation presented in this study may provide technical support for the development of ECLSS in future manned spaceflights. 相似文献
2.
With the rapid expansion of graphs and networks and the growing magnitude of data from all areas of science, effective treatment and compression schemes of context-dependent data is extremely desirable. A particularly interesting direction is to compress the data while keeping the “structural information” only and ignoring the concrete labelings. Under this direction, Choi and Szpankowski introduced the structures (unlabeled graphs) which allowed them to compute the structural entropy of the Erdős–Rényi random graph model. Moreover, they also provided an asymptotically optimal compression algorithm that (asymptotically) achieves this entropy limit and runs in expectation in linear time. In this paper, we consider the stochastic block models with an arbitrary number of parts. Indeed, we define a partitioned structural entropy for stochastic block models, which generalizes the structural entropy for unlabeled graphs and encodes the partition information as well. We then compute the partitioned structural entropy of the stochastic block models, and provide a compression scheme that asymptotically achieves this entropy limit. 相似文献
3.
This study proposesd a novel, entropy-based structural health monitoring (SHM) system for measuring microvibration signals generated by actual buildings. A structural health diagnosis interface was established for demonstration purposes. To enhance the reliability and accuracy of entropy evaluation at various scales, composite multiscale cross-sample entropy (CMSCE) was adopted to increase the number of coarse-grained time series. The degree of similarity and asynchrony between ambient vibration signals measured on adjacent floors was used as an in-dicator for structural health assessment. A residential building that has been monitored since 1994 was selected for long-term monitoring. The accumulated database, including both the earthquake and ambient vibrations in each seismic event, provided the possibility to evaluate the practicability of the CMSCE-based method. Entropy curves obtained for each of the years, as well as the stable trend of the corresponding damage index (DI) graphs, demonstrated the relia-bility of the proposed SHM system. Moreover, two large earthquake events that occurred near the monitoring site were analyzed. The results revealed that the entropy values may have been slightly increased after the earthquakes. Positive DI values were obtained for higher floors, which could provide an early warning of structural instability. The proposed SHM system is highly stable and practical. 相似文献
4.
Maurizio Benfatto Elisabetta Pace Catalina Curceanu Alessandro Scordo Alberto Clozza Ivan Davoli Massimiliano Lucci Roberto Francini Fabio De Matteis Maurizio Grandi Rohisha Tuladhar Paolo Grigolini 《Entropy (Basel, Switzerland)》2021,23(5)
We study the emission of photons from germinating seeds using an experimental technique designed to detect light of extremely small intensity. We analyze the dark count signal without germinating seeds as well as the photon emission during the germination process. The technique of analysis adopted here, called diffusion entropy analysis (DEA) and originally designed to measure the temporal complexity of astrophysical, sociological and physiological processes, rests on Kolmogorov complexity. The updated version of DEA used in this paper is designed to determine if the signal complexity is generated either by non-ergodic crucial events with a non-stationary correlation function or by the infinite memory of a stationary but non-integrable correlation function or by a mixture of both processes. We find that dark count yields the ordinary scaling, thereby showing that no complexity of either kinds may occur without any seeds in the chamber. In the presence of seeds in the chamber anomalous scaling emerges, reminiscent of that found in neuro-physiological processes. However, this is a mixture of both processes and with the progress of germination the non-ergodic component tends to vanish and complexity becomes dominated by the stationary infinite memory. We illustrate some conjectures ranging from stress induced annihilation of crucial events to the emergence of quantum coherence. 相似文献
5.
Timothy Child Owen Sheekey Silvia Lüscher Saeed Fallahi Geoffrey C. Gardner Michael Manfra Joshua Folk 《Entropy (Basel, Switzerland)》2022,24(3)
Previous measurements utilizing Maxwell relations to measure change in entropy, S, demonstrated remarkable accuracy in measuring the spin-1/2 entropy of electrons in a weakly coupled quantum dot. However, these previous measurements relied upon prior knowledge of the charge transition lineshape. This had the benefit of making the quantitative determination of entropy independent of scale factors in the measurement itself but at the cost of limiting the applicability of the approach to simple systems. To measure the entropy of more exotic mesoscopic systems, a more flexible analysis technique may be employed; however, doing so requires a precise calibration of the measurement. Here, we give details on the necessary improvements made to the original experimental approach and highlight some of the common challenges (along with strategies to overcome them) that other groups may face when attempting this type of measurement. 相似文献
6.
Studying heart rate dynamics would help understand the effects caused by a hyperkinetic heart in patients with hyperthyroidism. By using a multiscale entropy (MSE) analysis of heart rate dynamics derived from one-channel electrocardiogram recording, we aimed to compare the system complexity of heart rate dynamics between hyperthyroid patients and control subjects. A decreased MSE complexity index (CI) computed from MSE analysis reflects reduced system complexity. Compared with the control subjects (n = 37), the hyperthyroid patients (n = 37) revealed a significant decrease (p < 0.001) in MSE CI (hyperthyroid patients 10.21 ± 0.37 versus control subjects 14.08 ± 0.21), sample entropy for each scale factor (from 1 to 9), and high frequency power (HF) as well as a significant increase (p < 0.001) in low frequency power (LF) in normalized units (LF%) and ratio of LF to HF (LF/HF). In conclusion, besides cardiac autonomic dysfunction, the system complexity of heart rate dynamics is reduced in hyperthyroidism. This finding implies that the adaptability of the heart rate regulating system is impaired in hyperthyroid patients. Additionally, it might explain the exercise intolerance experienced by hyperthyroid patients. In addition, hyperthyroid patients and control subjects could be distinguished by the MSE CI computed from MSE analysis of heart rate dynamics. 相似文献
7.
8.
Chandan Karmakar Radhagayathri Udhayakumar Marimuthu Palaniswami 《Entropy (Basel, Switzerland)》2020,22(12)
Entropy profiling is a recently introduced approach that reduces parametric dependence in traditional Kolmogorov-Sinai (KS) entropy measurement algorithms. The choice of the threshold parameter r of vector distances in traditional entropy computations is crucial in deciding the accuracy of signal irregularity information retrieved by these methods. In addition to making parametric choices completely data-driven, entropy profiling generates a complete profile of entropy information as against a single entropy estimate (seen in traditional algorithms). The benefits of using “profiling” instead of “estimation” are: (a) precursory methods such as approximate and sample entropy that have had the limitation of handling short-term signals (less than 1000 samples) are now made capable of the same; (b) the entropy measure can capture complexity information from short and long-term signals without multi-scaling; and (c) this new approach facilitates enhanced information retrieval from short-term HRV signals. The novel concept of entropy profiling has greatly equipped traditional algorithms to overcome existing limitations and broaden applicability in the field of short-term signal analysis. In this work, we present a review of KS-entropy methods and their limitations in the context of short-term heart rate variability analysis and elucidate the benefits of using entropy profiling as an alternative for the same. 相似文献
9.
Entropy-based methods have received considerable attention in the quantification of structural complexity of real-world systems. Among numerous empirical entropy algorithms, conditional entropy-based methods such as sample entropy, which are associated with amplitude distance calculation, are quite intuitive to interpret but require excessive data lengths for meaningful evaluation at large scales. To address this issue, we propose the variational embedding multiscale sample entropy (veMSE) method and conclusively demonstrate its ability to operate robustly, even with several times shorter data than the existing conditional entropy-based methods. The analysis reveals that veMSE also exhibits other desirable properties, such as the robustness to the variation in embedding dimension and noise resilience. For rigor, unlike the existing multivariate methods, the proposed veMSE assigns a different embedding dimension to every data channel, which makes its operation independent of channel permutation. The veMSE is tested on both stimulated and real world signals, and its performance is evaluated against the existing multivariate multiscale sample entropy methods. The proposed veMSE is also shown to exhibit computational advantages over the existing amplitude distance-based entropy methods. 相似文献
10.
Chang Yan Peng Li Meicheng Yang Yang Li Jianqing Li Hongxing Zhang Chengyu Liu 《Entropy (Basel, Switzerland)》2022,24(3)
How the complexity or irregularity of heart rate variability (HRV) changes across different sleep stages and the importance of these features in sleep staging are not fully understood. This study aimed to investigate the complexity or irregularity of the RR interval time series in different sleep stages and explore their values in sleep staging. We performed approximate entropy (ApEn), sample entropy (SampEn), fuzzy entropy (FuzzyEn), distribution entropy (DistEn), conditional entropy (CE), and permutation entropy (PermEn) analyses on RR interval time series extracted from epochs that were constructed based on two methods: (1) 270-s epoch length and (2) 300-s epoch length. To test whether adding the entropy measures can improve the accuracy of sleep staging using linear HRV indices, XGBoost was used to examine the abilities to differentiate among: (i) 5 classes [Wake (W), non-rapid-eye-movement (NREM), which can be divide into 3 sub-stages: stage N1, stage N2, and stage N3, and rapid-eye-movement (REM)]; (ii) 4 classes [W, light sleep (combined N1 and N2), deep sleep (N3), and REM]; and (iii) 3 classes: (W, NREM, and REM). SampEn, FuzzyEn, and CE significantly increased from W to N3 and decreased in REM. DistEn increased from W to N1, decreased in N2, and further decreased in N3; it increased in REM. The average accuracy of the three tasks using linear and entropy features were 42.1%, 59.1%, and 60.8%, respectively, based on 270-s epoch length; all were significantly lower than the performance based on 300-s epoch length (i.e., 54.3%, 63.1%, and 67.5%, respectively). Adding entropy measures to the XGBoost model of linear parameters did not significantly improve the classification performance. However, entropy measures, especially PermEn, DistEn, and FuzzyEn, demonstrated greater importance than most of the linear parameters in the XGBoost model.300-s270-s. 相似文献
11.
Francisco Prieto-Castrillo Javier Borondo Rubn Martín García Rosa M. Benito 《Entropy (Basel, Switzerland)》2022,24(5)
In this paper, we study the phenomena of collapse and anomalous diffusion in shared mobility systems. In particular, we focus on a fleet of vehicles moving through a stations network and analyse the effect of self-journeys in system stability, using a mathematical simplex under stochastic flows. With a birth-death process approach, we find analytical upper bounds for random walk and we monitor how the system collapses by super diffusing under different randomization conditions. Using the multi-scale entropy metric, we show that real data from a bike-sharing fleet in the city of Salamanca (Spain) present a complex behaviour with more of a signal than a disorganized system with a white noise signal. 相似文献
12.
Yanping Guo Yingying Chen Qianru Yang Fengzhen Hou Xinyu Liu Yan Ma 《Entropy (Basel, Switzerland)》2021,23(9)
Insomnia is a common sleep disorder that is closely associated with the occurrence and deterioration of cardiovascular disease, depression and other diseases. The evaluation of pharmacological treatments for insomnia brings significant clinical implications. In this study, a total of 20 patients with mild insomnia and 75 healthy subjects as controls (HC) were included to explore alterations of electroencephalogram (EEG) complexity associated with insomnia and its pharmacological treatment by using multi-scale permutation entropy (MPE). All participants were recorded for two nights of polysomnography (PSG). The patients with mild insomnia received a placebo on the first night (Placebo) and temazepam on the second night (Temazepam), while the HCs had no sleep-related medication intake for either night. EEG recordings from each night were extracted and analyzed using MPE. The results showed that MPE decreased significantly from pre-lights-off to the period during sleep transition and then to the period after sleep onset, and also during the deepening of sleep stage in the HC group. Furthermore, results from the insomnia subjects showed that MPE values were significantly lower for the Temazepam night compared to MPE values for the Placebo night. Moreover, MPE values for the Temazepam night showed no correlation with age or gender. Our results indicated that EEG complexity, measured by MPE, may be utilized as an alternative approach to measure the impact of sleep medication on brain dynamics. 相似文献
13.
Jan Korbel 《Entropy (Basel, Switzerland)》2021,23(1)
The maximum entropy principle consists of two steps: The first step is to find the distribution which maximizes entropy under given constraints. The second step is to calculate the corresponding thermodynamic quantities. The second part is determined by Lagrange multipliers’ relation to the measurable physical quantities as temperature or Helmholtz free energy/free entropy. We show that for a given MaxEnt distribution, the whole class of entropies and constraints leads to the same distribution but generally different thermodynamics. Two simple classes of transformations that preserve the MaxEnt distributions are studied: The first case is a transform of the entropy to an arbitrary increasing function of that entropy. The second case is the transform of the energetic constraint to a combination of the normalization and energetic constraints. We derive group transformations of the Lagrange multipliers corresponding to these transformations and determine their connections to thermodynamic quantities. For each case, we provide a simple example of this transformation. 相似文献
14.
In this paper we compute the leading correction to the bipartite entanglement entropy at large sub-system size, in integrable
quantum field theories with diagonal scattering matrices. We find a remarkably universal result, depending only on the particle
spectrum of the theory and not on the details of the scattering matrix. We employ the “replica trick” whereby the entropy
is obtained as the derivative with respect to n of the trace of the nth power of the reduced density matrix of the sub-system, evaluated at n=1. The main novelty of our work is the introduction of a particular type of twist fields in quantum field theory that are
naturally related to branch points in an n-sheeted Riemann surface. Their two-point function directly gives the scaling limit of the trace of the nth power of the reduced density matrix. Taking advantage of integrability, we use the expansion of this two-point function
in terms of form factors of the twist fields, in order to evaluate it at large distances in the two-particle approximation.
Although this is a well-known technique, the new geometry of the problem implies a modification of the form factor equations
satisfied by standard local fields of integrable quantum field theory. We derive the new form factor equations and provide
solutions, which we specialize both to the Ising and sinh-Gordon models. 相似文献
15.
16.
Bounded rationality is an important consideration stemming from the fact that agents often have limits on their processing abilities, making the assumption of perfect rationality inapplicable to many real tasks. We propose an information-theoretic approach to the inference of agent decisions under Smithian competition. The model explicitly captures the boundedness of agents (limited in their information-processing capacity) as the cost of information acquisition for expanding their prior beliefs. The expansion is measured as the Kullblack–Leibler divergence between posterior decisions and prior beliefs. When information acquisition is free, the homo economicus agent is recovered, while in cases when information acquisition becomes costly, agents instead revert to their prior beliefs. The maximum entropy principle is used to infer least biased decisions based upon the notion of Smithian competition formalised within the Quantal Response Statistical Equilibrium framework. The incorporation of prior beliefs into such a framework allowed us to systematically explore the effects of prior beliefs on decision-making in the presence of market feedback, as well as importantly adding a temporal interpretation to the framework. We verified the proposed model using Australian housing market data, showing how the incorporation of prior knowledge alters the resulting agent decisions. Specifically, it allowed for the separation of past beliefs and utility maximisation behaviour of the agent as well as the analysis into the evolution of agent beliefs. 相似文献
17.
18.
19.
卢道明 《原子与分子物理学报》2009,26(1):119-124
利用Tavis-Cummings模型研究了耦合二能级原子通过多光子跃迁与相干态光场相互作用系统中场熵的演化规律,讨论了原子间耦合强度和光场初始平均光子数的变化对场熵演化的影响。数值计算结果表明: 场熵的演化受原子间耦合强度和光场初始平均光子数的变化的影响.随光场初始平均光子数的增大,场熵平均值增大。 相似文献
20.
结构光测量中获取高精度相位的新方法 总被引:4,自引:6,他引:4
随着制造技术的快速发展.三维光学测量技术也得到迅速的发展,利用双目CCD(电耦合插件)摄像机记录的光栅投影测量技术是一种新型的光学测量方法。在该方法的测量过程中,通过测量相位值取得测量空间。为了获得连续的高精度测量相位值.提出一种结合了格雷(Gray)编码并能够优化相位精度的相移方法,该方法通过投影相位传递函数来优化测量相位值。为了消除光栅投影图像中非正弦、周期变化和其他干扰因素的影响,给出投影光栅一种新的光强函数,利用这个光强函数能够进一步提高投影光栅测量相位精度。最终,通过插值测量相位精度能达到亚像素级. 相似文献