首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Optimal implementation of quantum gates is crucial for designing a quantum computer. We consider the matrix representation of an arbitrary multiqubit gate. By ordering the basis vectors using the Gray code, we construct the quantum circuit which is optimal in the sense of fully controlled single-qubit gates and yet is equivalent with the multiqubit gate. In the second step of the optimization, superfluous control bits are eliminated, which eventually results in a smaller total number of the elementary gates. In our scheme the number of controlled NOT gates is O(4(n)) which coincides with the theoretical lower bound.  相似文献   

2.
《Physics letters. A》2020,384(18):126387
Quantum process tomography (QPT) of each directly implementable quantum gate used in the IBM quantum processors is performed to compute gate error in order to check viability of complex quantum operations in the superconductivity-based quantum computers introduced by IBM. QPT of C-NOT gates is performed for three configurations available in IBM QX4. For the other allowed gates QPT have been performed for every allowed position (i.e., by placing the gates in different qubit lines) for IBM QX4 architecture, and thus, gate fidelities are obtained. Gate fidelities are observed to be lower than the corresponding values obtained in the other technologies, like NMR. Further, gate fidelities for all the single-qubit gates are obtained for IBM QX2 architecture by placing the gates in the third qubit line (q[2]). It's observed that the IBM QX4 architecture yields better gate fidelity compared to IBM QX2 in all cases except Y gate.  相似文献   

3.
Which gates are universal for quantum computation? Although it is well known that certain gates on two-level quantum systems (qubits), such as the controlled-not, are universal when assisted by arbitrary one-qubit gates, it has only recently become clear precisely what class of two-qubit gates is universal in this sense. We present an elementary proof that any entangling two-qubit gate is universal for quantum computation, when assisted by one-qubit gates. A proof of this result for systems of arbitrary finite dimension has been provided by Brylinski and Brylinski; however, their proof relies on a long argument using advanced mathematics. In contrast, our proof provides a simple constructive procedure which is close to optimal and experimentally practical.  相似文献   

4.
In this paper, the synthesis and implementation of three-qubit SWAP gate is discussed. The three-qubit SWAP gate can be decomposed into product of 2 two-qubit SWAP gates, and it can be realized by 6 CNOT gates. Research illustrated that although the result is very simple, the current methods of matrix decomposition for multi-qubit gate can not get that. Then the implementation of three-qubit SWAP gate in the three spin system with Ising interaction is investigated and the sequence of control pulse and drift process to implement the gate is given. It needs 23 control pulses and 12 drift processes. Since the interaction can not be switched on and off at will, the realization of three-qubit SWAP gate in specific quantum system also can not simply come down to 2 two-qubit SWAP gates.  相似文献   

5.
Any unitary operation in quantum information processing can be implemented via a sequence of simpler steps — quantum gates. However, actual implementation of a quantum gate is always imperfect and takes a finite time. Therefore, searching for a short sequence of gates — efficient quantum circuit for a given operation, is an important task. We contribute to this issue by proposing optimization of the well-known universal procedure proposed by Barenco et al. [Phys. Rev. A 52, 3457 (1995)]. We also created a computer program which realizes both Barenco’s decomposition and the proposed optimization. Furthermore, our optimization can be applied to any quantum circuit containing generalized Toffoli gates, including basic quantum gate circuits.   相似文献   

6.
We provide an analytic way to implement any arbitrary two-qubit unitary operation, given an entangling two-qubit gate together with local gates. This is shown to provide explicit construction of a universal quantum circuit that exactly simulates arbitrary two-qubit operations in SU(4). Each block in this circuit is given in a closed form solution. We also provide a uniform upper bound of the applications of the given entangling gates, and find that exactly half of all the controlled-unitary gates satisfy the same upper bound as the CNOT gate. These results allow for the efficient implementation of operations in SU(4) required for both quantum computation and quantum simulation.  相似文献   

7.
We introduce a method for finding the required control parameters for a quantum computer that yields the desired quantum algorithm without invoking elementary gates. We concentrate on the Josephson charge-qubit model, but the scenario is readily extended to other physical realizations. Our strategy is to numerically find any desired double- or triple-qubit gate. The motivation is the need to significantly accelerate quantum algorithms in order to fight decoherence.  相似文献   

8.
Nonadiabatic holonomic quantum computation has received increasing attention due to its robustness against control errors.However,all the previous schemes have to use at least two sequentially implemented gates to realize a general one-qubit gate.Based on two recent reports,we construct two Hamiltonians and experimentally realized nonadiabatic holonomic gates by a single-shot implementation in a two-qubit nuclear magnetic resonance(NMR)system.Two noncommuting one-qubit holonomic gates,rotating along x?and z?axes respectively,are implemented by evolving a work qubit and an ancillary qubit nonadiabatically following a quantum circuit designed.Using a sequence compiler developed for NMR quantum information processor,we optimize the whole pulse sequence,minimizing the total error of the implementation.Finally,all the nonadiabatic holonomic gates reach high unattenuated experimental fidelities over 98%.  相似文献   

9.
Quantum logic gates based on coherent electron transport in quantum wires   总被引:3,自引:0,他引:3  
It is shown that the universal set of quantum logic gates can be realized using solid-state quantum bits based on coherent electron transport in quantum wires. The elementary quantum bits are realized with a proper design of two quantum wires coupled through a potential barrier. Numerical simulations show that (a) a proper design of the coupling barrier allows one to realize any one-qbit rotation and (b) Coulomb interaction between two qbits of this kind allows the implementation of the CNOT gate. These systems are based on a mature technology and seem to be integrable with conventional electronics.  相似文献   

10.
Since Controlled-Square-Root-of-NOT (CV, CV?) gates are not permutative quantum gates, many existing methods cannot effectively synthesize optimal 3-qubit circuits directly using the NOT, CNOT, Controlled-Square-Root-of-NOT quantum gate library (NCV), and the key of effective methods is the mapping of NCV gates to four-valued quantum gates. Firstly, we use NCV gates to create the new quantum logic gate library, which can be directly used to get the solutions with smaller quantum costs efficiently. Further, we present a novel generic method which quickly and directly constructs this new optimal quantum logic gate library using CNOT and Controlled-Square-Root-of-NOT gates. Finally, we present several encouraging experiments using these new permutative gates, and give a careful analysis of the method, which introduces a new idea to quantum circuit synthesis.  相似文献   

11.
We present a scheme for efficiently constructing high-dimensional cluster state using probabilistic entangling quantum gates. It is shown that the required computational overhead scales efficiently both with lip and n even if all the entangling quantum gates only succeed with an arbitrary small probability, where p is the success probability of the entangling quantum gate and n is the number of qubits in the computation.  相似文献   

12.
提出了一种新型的基于半导体光纤环形腔激光器(SFRL)中同时发生的四波混频效应和交叉增益调制效应同时实现全光AND门和NOR门方案,并建立了这种全光逻辑门完整的宽带理论模型.通过数值模拟的方法,研究了输入信号光峰值功率及SFRL中两个耦合器的耦合比对这种全光逻辑门输出特性的影响. 关键词: 半导体光纤环形腔激光器 全光逻辑门 四波混频 交叉增益调制  相似文献   

13.
14.
Quantum optimal control theory allows us to design accurate quantum gates. We employ it to design high-fidelity two-bit gates for Josephson charge qubits in the presence of both leakage and noise. Our protocol considerably increases the fidelity of the gate and, more important, it is quite robust in the disruptive presence of 1/f noise. The improvement in the gate performances discussed in this work (errors approximately 10(-3)-10(-4) in realistic cases) allows us to cross the fault tolerance threshold.  相似文献   

15.
Optimal implementation of quantum gates is crucial for realization of quantum computation. We slightly modify the Khaneja-Glaser decomposition (KGD) for n-qubits and give a new Cartan subalgbra in the second step of the decomposition. Based on this modified KGD, we investigate the realization of three-qubit logic gate and obtain the result that a general three-qubit quantum logic gate can be implemented using at most 73 one-qubit gates rotations with respect to the y and z axes and 26 CNOT gates.  相似文献   

16.
17.
High‐fidelity universal quantum gates are crucial in quantum computing. Three high‐fidelity universal quantum gates, namely the hybrid controlled NOT gate, the hybrid Toffoli gate, and the hybrid Fredkin gate, on a flying photon qubit and diamond nitrogen‐vacancy (NV) centers, assisted by low‐Q single‐sided cavities, are presented. Errors due to the imperfection of the practical input–output process are detected to improve the fidelity of these quantum gates, which therefore relaxes the requirement on their implementation, since strong coupling is no longer mandatory. In addition, quantum gates have the advantage that they can work faithfully even when the resonant condition among the NV center, the photon, and the cavity is not strictly satisfied, or the NV centers are not identical. The performance and success probability of these quantum gates are analyzed, finding that these schemes are feasible with current technology.  相似文献   

18.
A crucial building block for quantum information processing with trapped ions is a controlled-NOT quantum gate. In this Letter, two different sequences of laser pulses implementing such a gate operation are analyzed using quantum process tomography. Fidelities of up to 92.6(6)% are achieved for single-gate operations and up to 83.4(8)% for two concatenated gate operations. By process tomography we assess the performance of the gates for different experimental realizations and demonstrate the advantage of amplitude-shaped laser pulses over simple square pulses. We also investigate whether the performance of concatenated gates can be inferred from the analysis of the single gates.  相似文献   

19.
张茜  李萌  龚旗煌  李焱 《物理学报》2019,68(10):104205-104205
量子比特在同一时刻可处于所有可能状态上的叠加特性使得量子计算机具有天然的并行计算能力,在处理某些特定问题时具有超越经典计算机的明显优势.飞秒激光直写技术因其具有单步骤高效加工真三维光波导回路的能力,在制备通用型集成光量子计算机的基本单元—量子逻辑门中发挥着越来越重要的作用.本文综述了飞秒激光直写由定向耦合器构成的光量子比特逻辑门的进展.主要包括定向耦合器的功能、构成、直写和性能表征,集成波片、哈达玛门和泡利交换门等单量子比特逻辑门、受控非门和受控相位门等两量子比特逻辑门的直写加工,并对飞秒激光加工三量子比特逻辑门进行了展望.  相似文献   

20.
Anyons can be used to realize quantum computation, because they are two-level systems in two dimensions. In this paper, we propose a scheme to simulate single-qubit gates and CNOT gate using Abelian anyons in the Kitaev model. Two pairs of anyons (six spins) are used to realize single-qubit gates, while ten spins are needed for the CNOT gate. Based on these quantum gates, we show how to realize the Grover algorithm in a two-qubit system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号