首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have developed a simple and efficient method for the enhanced loading of silver nanoparticles onto carbon nanospheres, and how this method can be used to design an electrochemical sensor for hydrogen peroxide (HP). A glassy carbon electrode was modified with hemoglobin, carbon nanospheres, and by enhanced loading of silver nanoparticles onto the carbon nanospheres via spontaneous polymerization of dopamine. The hemoglobin exhibits a remarkable electrocatalytic activity for the reduction of HP. The electrochemical response to HP is linear range in the 1.0–147.0?μM concentration range, with a detection limit of 0.3?μM at a signal-to-noise ratio of 3.
Figure
A simple and efficient method has developed for enhanced loading of silver nanoparticles onto carbon nanospheres via polydopamine (AgNP-Pdop@CNPs). The direct chemistry of hemoglobin has been achieved at the AgNP-Pdop@CNPs modified glassy carbon electrode and the modified electrode exhibits a remarkable electrocatalytic activity for the reduction of hydrogen peroxide. The electrochemical response to H2O2 shows a linear range of 1.0–147.0?μM with a calculated detection limit of 0.3?μM at a signal-to-noise ratio of 3  相似文献   

2.
水溶液中2,4,6-三溴苯酚在银阴极上的选择性脱卤   总被引:2,自引:0,他引:2  
采用循环伏安法比较了玻碳、光亮银和粗糙化银电极对2,4,6-三溴苯酚还原脱卤反应的电催化活性, 初步研究了碱性水溶液中2,4,6-三溴苯酚在粗糙化银电极上的还原脱卤历程; 在此基础上, 利用恒电位电解法进一步探索了2,4,6-三溴苯酚在粗糙化银电极上的电还原脱卤历程. 结果表明, 粗糙化银电极对2,4,6-三溴苯酚的选择性还原脱卤反应具有优良的电催化活性, 且其活性优于光亮银和玻碳电极; 2,4,6-三溴苯酚在粗糙化银电极上的还原反应是个逐步脱卤过程, 推测得出其邻位和对位C—Br键的还原断裂所需的活化能非常接近, 而反应中间产物2,4-二溴苯酚的对位C—Br键的还原断裂所需的活化能比邻位要低; 2,4,6-三溴苯酚能实现完全脱卤生成苯酚, 主要路径为2,4,6-三溴苯酚→2,4-二溴苯酚→2-溴苯酚→苯酚.  相似文献   

3.
In the work, several facile and easily controlled procedures were designed to successfully synthesize a few NiO samples with various morphologies, including nanosheets, nanobelts, nanoparticles and empty microspheres, via a hydrothermal method. The as-prepared samples were characterized by X-ray powder diffractometer, TEM and field emission scanning electron microscopy technologies. The results revealed that the as-synthesized NiO samples displayed expected nanosheets, nanobelts, nanoparticles and empty microspheres in shape. The electrocatalytic performance of each NiO sample modified on a glassy carbon electrode for p-nitrophenol reduction in a basic solution using cyclic voltammetry method was investigated. The results indicated that the glassy carbon electrode modified with each NiO sample showed enhanced electrocatalytic activity by comparing a bare glassy carbon electrode, and especially NiO nanopatricles and empty microsphere exhibited the higher electrocatalytic activty for p-nitrophenol reduction.  相似文献   

4.
The catalytic behaviour of glassy carbon electrode modified by 1,2-dihydroxy antraquinone (Alizarin) was investigated. The electrocatalytic ability of modified electrode for the reduction of dioxygen was examined by cyclic voltammetry and rotating disk electrode (RDE) voltammetry techniques. The Alizarin modified glassy carbon electrode possesses excellent electrocatalytic abilities for dioxygen reduction over potential 400 mV lower than at the bare glassy carbon electrode. Hydrodynamic studies were performed to determine the heterogeneous rate constant for the reduction of O2 at the surface of modified electrode. It was determined by Koutecky-Levich plot. The apparent diffusion coefficient of O2 in O2 saturated acidic solutions was estimated by using Levich equation. Studies show the involvement of four electrons in dioxygen reduction at the surface of this modified electrode.  相似文献   

5.
Stable electroactive iron tetra(o-aminophenyl)porphyrin (FeTAPP) films are prepared by electropolymerization from aqueous solution by cycling the electrode potential between −0.4 and 1.0 V vs Ag/AgCl at 0.1 V s−1. The cyclic voltammetric response indicates that polymerization takes place after the oxidation of amino groups, and the films could be produced on glassy carbon (GC) and gold electrodes. The film growth of poly(FeTAPP) was monitored by using cyclic voltammetry and electrochemical quartz crystal microbalance. The cyclic voltammetric features of Fe(III)/Fe(II) redox couple in the film resembles that of surface confined redox species. The electrochemical response of the modified electrode was found to be dependent on the pH of the contacting solution with a negative shift of 57 mV/pH. The electrocatalytic behavior of poly(FeTAPP) film-modified electrode was investigated towards reduction of hydrogen peroxide, molecular oxygen, and chloroacetic acids (mono-, di-, and tri-). The reduction of hydrogen peroxide, molecular oxygen, and dichloroacetic acid occurred at less negative potential on poly(FeTAPP) film compared to bare GC electrode. Particularly, the overpotential of hydrogen peroxide was reduced substantially. The O2 reduction proceeds through direct four-electron reduction mechanism.  相似文献   

6.
Platinum nanoparticles were successfully deposited within a multiwalled carbon nanotube (MWCNT)–Nafion matrix by a cyclic voltammetry method. A Pt(IV) complex was reduced to platinum nanoparticles on the surface of MWCNTs. The resulting Pt nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The Pt–MWCNT–Nafion nanocomposite film-modified glassy carbon electrode had a sharp hydrogen desorption peak at about −0.2 V vs. Ag/AgCl (3 M) in a solution of 0.5 M H2SO4, which is directly related to the electrochemical activity of the Pt nanoparticles presented on the surface of MWCNTs. The electrocatalytic properties of the Pt–MWCNT–Nafion nanocomposite-modified glassy carbon electrode for methanol electrooxidation were investigated by cyclic voltammetry in a 2 M CH3OH + 1 M H2SO4 solution. In comparison with the Pt-coated glassy carbon electrode and the Pt–Nafion modified glassy carbon electrode, the Pt–MWCNT–Nafion-modified electrode had excellent electrocatalytic activity toward methanol electrooxidation. The stability of the Pt–MWCNT–Nafion nanocomposite-modified electrode had also been evaluated.  相似文献   

7.
We have developed a method for in-situ construction of a porous network-like silver film on the surface of a glassy carbon electrode (GCE). It is based on a galvanic replacement reaction where a layer of copper nanoparticles is first electrodeposited as a sacrificial template. The silver film formed possesses a porous network-like structure and consists of an assembly of numerous nanoparticles with an average size of 200 nm. The electrode displays excellent electrocatalytic activity, good stability, and fast response (within 2 s) toward the reduction of nitrate at a working potential of ?0.9 V. The catalytic currents linearly increase with the nitrate concentrations in the range of 0.08–6.52 mM, with a detection limit of 3.5 μM (S/N?=?3) and a repeatability of 3.4 % (n?=?5).
Figure
A facile method was developed for in situ construction of a porous network-like Ag film on a glassy carbon electrode by a galvanic replacement reaction, where a layer of Cu nanoparticles previously electrodeposited as a sacrificial template. Thus-formed Ag film displays excellent electrocatalytic activity, good stability, and fast response (within 2 s) toward nitrate reduction.  相似文献   

8.
A sensor based on silver nanoparticles (NPs)/multiwalled carbon nanotube (CNT)-modified glassy carbon electrode (GCE) was prepared and employed for accurate and rapid determination of hydrogen peroxide (H2O2). In summary, by using a mechanochemical method, multiwalled CNTs dispersed in ethanol and used for modification of GCE. After that, by using a double-pulse technique, silver NPs are electrodeposited on surface of multiwalled CNTs/ GCE. Parameters that are affected by electrocatalytic reduction of H2O2 on the modified electrode, such as multiwalled CNT concentration and double-pulse parameters, were optimized using Minitab software. The optimal modified electrode was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and cyclic voltammetry. The proposed H2O2 sensor exhibited excellent characteristics for the sensing of H2O2, such as wide linear range from 0.1 to 10 mM, a low detection limit of 2 μM, high repeatability, and no interference by a number of substances.  相似文献   

9.
The electrochemical reduction of di-carboxylic acids; oxalic, succinic, malic, and tartaric have been studied on the gold nanoparticles modified electrode in aqueous media solution of 0.1 M KCl. Gold nanoparticle (AuNPs)-modified electrodes were prepared by the electrodeposition with cyclic voltammetric method onto glassy carbon electrode in acidic media. The surface morphology of the electrodeposited gold nanoparticles was examined by SEM. Also, the electrochemical properties of the prepared electrodes were investigated with different electrochemical techniques; cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. Cyclic voltammetric, chronoamperometric, and electrochemical impedance spectroscopic techniques were used for investigating the electrochemical behavior of the particulate acids. The modification of the electrode with Au nanoparticles (AuNPs) enables the appearance of cyclic voltammogram peaks completely clear and sharp for the acids under investigation in comparison with the poor behavior of them in absence of the modification. All acids undergo totally irreversible redox reaction in neutral and acid media. The cyclic voltammetric response of the investigated acids is sensitive to pH, as well as of the scan rate. Each acid has a different reduction peak position from the other acids depending on the structure of the acid undergo the electroreduction process. Further, the lowest unoccupied molecular orbital energies of the investigated acids have been theoretically evaluated and are compared with their electroreduction potential peaks.  相似文献   

10.
A novel Prussian blue/copper‐gold bimetallic nanoparticles hybrid film modified electrode was prepared by electrochemical deposition on a glassy carbon electrode (PB/Cu‐AuNPs/GCE). Morphology and electrochemistry of this electrode were studied by UV‐vis spectroscopy, scanning electron microscopy, X‐ray diffraction, cyclic voltammetry and electrochemical impedance spectroscopy. The sensor showed significantly better electrocatalytic activity for the reduction of hydrogen peroxide in comparison with the single PB/GCE and PB/AuNPs/GCE. This was attributed to the synergistic effect of PB and Cu‐Au bimetallic nanoparticles. Also, the sensor demonstrated an overall high level of performance for the analysis of H2O2 in the concentration range from 0.002 to 0.84 mM.  相似文献   

11.
An interesting mode of reactivity of MnO2 nanoparticles modified electrode in the presence of H2O2 is reported. The MnO2 nanoparticles modified electrodes show a bi-direction electrocatalytic ability toward the reduction/oxidation of H2O2. Based on this property, a choline biosensor was fabricated via a direct and facile electrochemical deposition of a biocomposite that was made of chitosan hydrogel, choline oxidase (ChOx) and MnO2 nanoparticles onto a glassy carbon (GC) electrode. The biocomposite is homogeneous and easily prepared and provides a shelter for the enzyme to retain its bioactivity. The results of square wave voltammetry showed that the electrocatalytic reduction currents increased linearly with the increase of choline chloride concentration in the range of 1.0 × 10−5 –2.1 × 10−3 M and no obvious interference from ascorbic acid and uric acid was observed. Good reproducibility and stability were obtained. A possible reaction mechanism was proposed.  相似文献   

12.
A new approach to study electrocatalytic oxidation of glucose is proposed. As opposed to numerous studies on electrodes modified with gold nanoparticles this reaction was studied in their suspension of gold nanoparticles under hydrodynamic conditions on a noncatalytic glassy carbon rotating disc electrode. It has been shown that addition of nanogram amount of positively charged Au nanoparticles results in a clear current response, whereas no clear response is seen for negatively charged ones. This effect results from the electrocatalytic oxidation of glucose on Au nanoparticles mainly adsorbed on glassy carbon electrode. The role of electrode preparation method on reproducibility of the results is emphasized.  相似文献   

13.
采用电位置换反应以及化学还原法制备了单分散PtNi 纳米粒子,循环伏安结果显示该纳米粒子在0.1mol·L-1硫酸介质中对CO的氧化表现出比本体Pt 电极更好的电催化活性. 以CO为探针分子,采用电化学原位红外光谱研究了PtNi 纳米粒子上的特殊红外光学性能. 结果表明,PtNi 纳米粒子无论是在玻碳电极还是在金电极上,均表现出对称的双极谱峰,同时给出很强的增强效应. 论文研究结果有助于进一步了解低维纳米材料特殊红外性能的本质.  相似文献   

14.
研究了抗坏血酸在铂纳米粒子/碳纳米管/聚吡咯复合膜修饰电极上的电化学行为,发现复合修饰电极对抗坏血酸的电化学反应具有较好的电催化作用,与空白电极相比电化学氧化电流增加了7倍。用电化学阻抗谱研究了电子在修饰电极界面上的传输过程,发现修饰电极的电催化性能与修饰电极可以提高界面电子传输能力是相关的。同时研究了碳纳米管用量、支持电解质、扫速、电沉积条件等因素对抗坏血酸在修饰电极上电化学行为的影响。  相似文献   

15.
A hybrid thin film containing Pt nanoparticles and [tetrakis(N-methylpyridyl)porphyrinato]cobalt (CoTMPyP) modified multi-walled carbon nanotubes (MWNTs) on a glassy carbon (GC) electrode surface was fabricated. This hybrid film electrode exhibited remarkable electrocatalytic activity for oxygen reduction and high stability with promising applications in fuel cells.  相似文献   

16.
The electrochemical sensing of catechol (CC) on a glassy carbon electrode modified with the ionothermal assisted synthesis of Ag doped TiO2 a nanoparticle has been successfully demonstrated for the first time.Ag doped TiO2 nanoparticles composite modified glassy carbon electrode exhibits higher electrocatalytic activity towards oxidation of catechol than glassy carbon electrode itself. The modified electrode also exhibits high selectivity towards this analyte in the presence of some of the metal ions and some of the biological compounds. Linear ranges and the limit of detections with the above electrode are 1–15 µM and 0.0249 µM respectively. The optimized protocol has been utilized for monitoring the catechol in some of the natural samples like apple juice and green tea and in industrial effluents.  相似文献   

17.
In this study, 4‐thiophenol modified glassy carbon electrode was prepared by the reduction of 4‐diazothiophenol tetrafluoroborate salt. Silver nanoparticles were attached to the thiophenol modified surface to prepare a thiophenol‐silver nanoparticle composite film. 4‐Aminothiopenol molecules were deposited by self‐assembling technique to form multi‐layered nanofilms of TP/SNP/PhNH2 on glassy carbon substrate. These surfaces were characterized by cyclic voltammetry, electrochemical impedance spectroscopy, X‐ray photoelectron spectroscopy, reflectance‐absorption infrared spectroscopy, and ellipsometry at each multilayer film growth process. Atomic force microscopic images of GC/TP/SNP/PhNH2 surfaces were also acquired. The characterization methods show that the amine group containing surface permits the subsequent modification by a variety of coupling reactions for the immobilization of more complex systems. An application of the electrode modification for the determination of uric acid with a significantly lower detection limit is described. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Ag nanoparticles were synthesized on the surface of a glassy carbon electrode modified with p‐tert‐butylcalix[4]arene and p‐tert‐butylcalix[6]arene by the deposition of Ag+ at an open circuit potential followed by the electrochemical reduction of the Ag+.The presence of the calixarene layer on the electrode surface controlled the particle size and prevented agglomeration.Cyclic voltam‐metry showed that the Ag nanoparticles on the modified glassy carbon electrode had good catalytic ability for the reduction of flutamide.The effects of calixarene concentration,potential applied for the reduction of Ag+,number of calixarene layers,and p H value on the electrocatalytic activity of the Ag nanoparticles were investigated.The modified electrode had a linear range in differential pulse voltammetry of 10-1000 μmol/L with a detection limit of 9.33 μmol/L for flutamide at an S/N = 3.The method was applied to the detection of flutamide in practical samples.  相似文献   

19.
The peculiar halide affinity for silver results in an extraordinary electrocatalytic activity for the reduction of halides (either glycosyl halides or, more generally, aryl and alkyl halides). The most striking features are: (a) a reduction potential shift in the positive direction of about 1000 mV with respect to glassy carbon and 500 mV with respect to mercury; (b) a cage effect, evidenced in previous synthetic work concerning bromosugars, promoted by the halide acting as a bridge between the electrode surface and the reacting substrate, which mainly results in dimerization and/or addition products. The above electrocatalytic effect is here investigated by means of a systematic reactivity study on Ag, Hg and glassy carbon cathodes, with a variety of substrates. The effect of the supporting electrolyte is also analysed in detail, providing a first inspection on specific halide/silver interactions in acetonitrile media.  相似文献   

20.
Silicomolybdate‐doped‐glutaraldehyde‐cross‐linked poly‐L ‐lysine (PLL‐GA‐SiMo) film modified glassy carbon electrode was prepared by means of electrostatically trapping the silicomolybdate anion in the cationic film. The PLL‐GA‐SiMo film was stable and the charge transport through the film was fast. The modified electrode shows excellent electrocatalytic activity towards hydrogen peroxide reduction with significant reduction of overpotential, however, not responded to potential interferrents such as dopamine, ascorbic acid and uric acid. This unique feature of PLL‐GA‐SiMo modified electrode allowed for the development of a highly selective method for the determination of H2O2 in the presence of interferents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号