首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A set of transport equations for the growth or decay of theamplitudes of shock waves along an arbitrary propagation directionin three-dimensional nonlinear elastic solids is derived using theLagrangian coordinates.The transport equations obtained showthat the time derivative of the amplitude of a shock wave alongany propagation ray depends on (i) an unknown quantity immediatelybehind the shock wave,(ii) the two principal curvatures of theshock surface,(iii) the gradient taken on the shock surface ofthe normal shock wave speed and (iv) the inhomogeneous term.whichis related to the motion ahead of the shock surface.vanisheswhen the motion ahead of the shock surface is uniform.Severalchoices of the propagation vector are given for which the tran-sport equations can be simplified.Some universal relations,which relate the time derivatives of various jump quantities toeach other but which do not depend on the constitutive equationsof the material,are also presented.  相似文献   

2.
The general equations for a dynamically curved crack in an anisotropic solid are derived, and the asymptotic fields of a moving crack under arbitrary distributed loading on the crack surface are calculated from them. For a moving crack under mixed-mode loading conditions a general Muskhelishvili type approach is proposed to calculate intensity factors due to crack surface loading in anisotropic materials. The kinking and curving caused by dynamic loading in anisotropic materials are calculated using the maximum normal stress ratio criterion. The results show that cracks in anisotropic solids may deviate from the straight path and approach a direction parallel to the stiff axis even under symmetric loading and that a crack will tend to deviate more from the crack path to the direction of the stiff axis as the crack speed becomes higher.  相似文献   

3.
We investigate collisions of solids which can fracture. Equations of motion and constitutive laws provide a predictive theory. Assuming the collision as instantaneous, the equations of motion are derived from the principle of virtual work introducing new interior forces which describe the very large stresses and the very large contact forces resulting from the kinematic incompatibilities. They are interior volume percussion stresses and interior surface percussions both on the unknown fractures and on the colliding surface. In order to approximate these equations, we assume solids are damageable. In this point of view, it results that velocity is continuous with respect to space but its strain rate is very large in a thin region where the material is completely damaged, so approximating a fracture. When the velocity before collision is very large, the damaged zone may be large accounting for parts of the solid completely transformed into powder. The constitutive laws result from dissipative functions satisfying the second law of thermodynamics and able to model the fracturation phenomenon at the macroscopic engineering level. Representative numerical examples confirm that the model accounts for the fracturation qualitative properties.  相似文献   

4.
RESTUDY OF THEORIES FOR ELASTIC SOLIDS WITH MICROSTRUCTURE   总被引:1,自引:0,他引:1  
IntroductionUptonowtherehasbeenverymuchwrittenworkonthesubjectsofcontinuumtheoriesinwhichthedeformationisdescribednotonlybytheusualvectordisplacementfield ,butbyothervectorortensorfieldsaswell.Inafamousmonograph ,E .CosseratandF .Cosserat[1]gaveasystematic…  相似文献   

5.
The interaction of arbitrarily distributed penny-shaped cracks in three-dimensional solids is analyzed in this paper. Using oblate spheroidal coordinates and displacement functions, an analytic method is developed in which the opening and the sliding displacements on each crack surface are taken as the basic unknown functions. The basic unknown functions can be expanded in series of Legendre polynomials with unknown coefficients. Based on superposition technique, a set of governing equations for the unknown coefficients are formulated from the traction free conditions on each crack surface. The boundary collocation procedure and the average method for crack-surface tractions are used for solving the governing equations. The solution can be obtained for quite closely located cracks. Numerical examples are given for several crack problems. By comparing the present results with other existing results, one can conclude that the present method provides a direct and efficient approach to deal with three-dimensional solids containing multiple cracks.The English text was polished by Keren Wang  相似文献   

6.
In this paper, a new analytic criterion for porous solids with matrix obeying Tresca yield criterion is derived. The criterion is micromechanically motivated and relies on rigorous upscaling theorems. Analysis is conducted for both tensile and compressive axisymmetric loading scenarios and spherical void geometry. Finite element cell calculations are also performed for various triaxialities. Both the new model and the numerical calculations reveal a very specific coupling between the mean stress and the third invariant of the stress deviator that results in the yield surface being centro-symmetric and void growth being dependent on the third-invariant of the stress deviator. Furthermore, it is verified that the classical Gurson’s criterion is an upper bound of the new criterion with Tresca matrix.  相似文献   

7.
It is shown that existing equations for predicting the holdups of wakes behind bubbles in three-phase fluidized beds are not entirely satisfactory. A new model is then developed whereby the wake is treated as the sphere-completing volume of a spherical cap bubble, due allowance being made for hydrodynamic interactions between bubbles. The generalized wake equations of Bhatia & Epstein (1974) are applied to compute the ratio of solids holdup in the wakes to that in the remaining liquid of the bed. Using experimental data from the literature, a rational equation is then generated for predicting this ratio from measured variables, and a mechanism for wake solids entrainment is proposed which is consistent with this equation.  相似文献   

8.
Solid mechanics can be addressed by a Lattice Spring Model whose major ingredients are briefly described. It is applied to solve the dynamic equations of motions and the static equations derived by homogenization. Results relative to the macroscopic properties of solids are successfully compared to the ones obtained by analytical methods and by other techniques of numerical calculations. Wave velocities derived by direct simulations are in good agreement with the ones derived by homogenization.  相似文献   

9.
Many composite materials, including biological tissues, are modeled as non-linear elastic materials reinforced with elastic fibers. In the current paper, the full set of dynamic equations for finite deformations of incompressible hyperelastic solids containing a single fiber family are considered. Finite-amplitude wave propagation ansätze compatible with the incompressibility condition are employed for a generic fiber family orientation. Corresponding non-linear and linear wave equations are derived. It is shown that for a certain class of constitutive relations, the fiber contribution vanishes when the displacement is independent of the fiber direction.Point symmetries of the derived wave models are classified with respect to the material parameters and the angle between the fibers and the wave propagation direction. For planar shear waves in materials with a strong fiber contribution, a special wave propagation direction is found for which the non-linear wave equations admit an additional symmetry group. Examples of exact time-dependent solutions are provided in several physical situations, including the evolution of pre-strained configurations and traveling waves.  相似文献   

10.
An approach is proposed to set up the dispersion equations for surface waves propagating through a periodically laminated piezoelectric medium, with the upper layer being a perfect compressible fluid. The approach is based on the formalism of Hamiltonian periodic systems. The dispersion equations derived are valid for an arbitrary law of variation in properties with periodicity coordinate. The influence of the liquid layer and inhomogeneity of the piezoelectric medium on the dispersion spectra of surface waves is studied__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 3, pp. 55–61, March 2005.  相似文献   

11.
The equations governing the equilibrium of a finitely deformed elastic solid are derived from the Principle of Minimum Potential Energy. The possibility of the deformation gradient and the stresses being discontinuous across certain surfaces in the body — “equilibrium shocks” — is allowed for. In addition to the equilibrium equations, natural boundary conditions and traction continuity condition, a supplementary jump condition which is to hold across the surface of discontinuity is derived. This condition is shown to imply that a stable equilibrium shock must necessarily be dissipation-free.  相似文献   

12.
The reflection and transmission of the thermo-elastic coupled waves at an interface of two different couple stress elastic solids are studied in this paper. Based on the Green-Lindsay theory, the governing equations and the constitutive equations are derived. Different from the classic elastic solid, the interface conditions include the surface couple, the rotation angle, the heat flux and the temperature change. The interface conditions are used to obtain the linear algebraic equations set from which the amplitude ratios of reflection and transmission waves to the incident wave can be determined. Then, the normal energy flux conservation is used to validate the numerical results. At last, the influences of two characteristic relaxation times and the five kinds of thermally and micromechanically interface conditions are discussed based on the numerical results. It is found that the thermal wave effects affect only the longitudinal wave while the couple stress effects affect only the transverse waves. The thermo-elastic coupling makes the longitudinal wave and the thermal wave not only dispersive but also attenuated.  相似文献   

13.
In this paper two complementary approaches are used to describe the mechanical behavior of saturated compressible and incompressible porous solids. The macroscopic investigation is based on the mixture theory, restricted by the volume fraction concept. In the micromechanical approach, a hierarchy of conditionally ensemble averaged fluid and solid phase momentum balance equations are derived for a simple model of quasi-static liquid saturated porous media. The ensemble averaged equations for both the phases agree remarkably well with the macroscopic results. A micromechanical basis for Terzhagi's effective stress concept is presented. In addition, an expression for additional partial solid stress modifying the effective stress principle, to account for deformability of solid materials, is also derived.  相似文献   

14.
Numerical simulation of gas-solid flow in a two-dimensional fluidized bed with an inclined jet was performed. The numerical model is based on the two-fluid model of gas and solids phase in which the solids constitutive equations are based on the kinetic theory of granular flow. The improved ICE algorithm, which can be used for both low and high-velocity fluid flow, were used to solve the model equations. The mechanism of jet formation was analyzed using both numerical simulations and experiments. The emergence and movement of gas bubbles were captured numerically and experimentally. The influences of jet velocity, nozzle diameter, nozzle inclination and jet position on jet penetration length were obtained. A semi-empirical expression was derived and the parameters were correlated from experimental data. The correlation equation, which can be easily used to obtain the inclined jet penetration length, was compared with our experimental data and published correlation equations.  相似文献   

15.
Acceleration waves in crystalline solids at finite temperatures are studied by applying the method of singular surface to a new continuum model derived from a nonequilibrium statistical-mechanical lattice model. The propagation velocities of the waves and the ratios of the mechanical and thermal amplitudes are determined. The differential equations which govern the variation of the amplitudes with time are also obtained. The analysis is valid in a wide temperature range including the melting point. The temperature dependence of the wave propagation is found to be singular at the melting point, and its physical implication is discussed. Received: August 1, 1996  相似文献   

16.
Rational design of smart sensors and actuators that consist of piezoelectric solids requires a thorough understanding of the constitutive behavior of this material under mechanical and electrical loading. Domain switching is the cause of significant nonlinearity in the constitutive behavior of piezoelectric solids, which may be enhanced in the presence of cracks. In this paper, the response of piezoelectric solids is formulated by coupling thermal, electrical, and mechanical effects. The corresponding finite element equations are derived and applied in the solution of the piezoelectric center crack problems. The effects of domain switching are evaluated on the near tip stress intensity factors.  相似文献   

17.
Steigmann  David J. 《Meccanica》2003,38(4):395-404
Professor J.F. Bell's empirical result regarding the rotation factor in the polar decomposition of the deformation gradient for the finite twist–extension of a thin-walled polycrystalline cylindrical metal tube is examined. The correct expression for the rotation is derived and used to show how Bell's result should be interpreted. Some implications for his incremental plasticity equations are also discussed. In particular, they are shown to satisfy appropriate invariance requirements when cast in terms of the variables actually measured by Bell in his experiments. Further consequences of his equations consistent with his data are also derived. Finally, it is shown that his theory furnishes a consistent constitutive statement about the response of isotropic solids provided that the Cauchy stress is constrained to be symmetric.  相似文献   

18.
梯度材料中矩形裂纹的对偶边界元方法分析   总被引:2,自引:0,他引:2  
肖洪天  岳中琦 《力学学报》2008,40(6):840-848
采用对偶边界元方法分析了梯度材料中的矩形裂纹. 该方法基于层状材料基本解,以非裂纹边界的位移和面力以及裂纹面的间断位移作为未知量. 位移边界积分方程的源点配置在非裂纹边界上,面力边界积分方程的源点配置在裂纹面上. 发展了边界积分方程中不同类型奇异积分的数值方法. 借助层状材料基本解,采用分层方法逼近梯度材料夹层沿厚度方向力学参数的变化. 与均匀介质中矩形裂纹的数值解对比,建议方法可以获得高精度的计算结果. 最后,分析了梯度材料中均匀张应力作用下矩形裂纹的应力强度因子,讨论了梯度材料非均匀参数、夹层厚度和裂纹与夹层之间相对位置对应力强度因子的影响.   相似文献   

19.
I. INTRODUCTION Di?erent from piezoelectricity which is a linear coupling between mechanical and electric ?elds andcan only exist in anisotropic materials[1], electrostriction refers to the quadratic dependence of strainor stress on electric ?elds[2,3] …  相似文献   

20.
Based on a continuum model for oriented elastic solids the set of nonlinear dispersive equations derived in Part I of this work allows one to investigate the nonlinear wave propagation of the soliton type. The equations govern the coupled rotation-displacement motions in connection with the linear elastic behavior and large-amplitude rotations of the director field. In the one-dimensional version of the equations and for two simple configurations an exhaustive study of solitons is presented. We show that the transverse and/or longitudinal elastic displacements are coupled to the rotational motion so that solitons, jointly in the rotation of the director and the elastic deformations, are exhibited. These solitons are solutions of a system of linear wave equations for the elastic displacements which are nonlinearly coupled to a sine-Gordon equation for the rotational motion. For each configuration, the solutions are numerically illustrated and the energy of the solitions is calculated. Finally, some applications of the continuum model and the related nonlinear dynamics to several physical situations are given and additional more complex problems are also evoked by way of conclusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号