首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In this contribution, the formation and immobilisation of chromium(iii) hydroxyoxide colloids is investigated. Nano-sized Cr(iii) colloids are generated in situ upon reduction of Cr(vi), dosed to a stirred reactor. The growth of the elementary colloids by the consumption of solved Cr is kinetically unfavorable compared to their aggregation to larger secondary particles, the size of which depends on the concentration of the building block colloids. This aggregation process can be steered by simple process parameters such as dosing rate and concentration of the Cr(vi). The Cr(iii) colloids are immobilised in situ on a support material via precipitation chromatography. Upon drying, the initially amorphose hydroxyoxides are gradually transformed into crystalline Cr(2)O(3) nanoparticles, mainly located at the external surface of the support. This approach opens new opportunities for the synthesis of supported metal oxide catalysts.  相似文献   

2.
B Gammelgaard  O J?ns  B Nielsen 《The Analyst》1992,117(3):637-640
A method for the simultaneous determination of chromium(iii) and chromium(vi) in a flow system based on chemiluminescence was developed. A Dionex cation-exchange guard column was used to separate chromium(iii) from chromium(vi), and chromium(vi) was reduced by potassium sulfite, whereupon both species were detected by use of the luminol-hydrogen peroxide chemiluminescence system. Linear calibration for both species was established over the concentration range 1-1000 micrograms l-1. The precision at the 20 micrograms l-1 level was 3.5% for chromium(iii) and 3.3% for chromium(vi), respectively. The detection limit was 0.5 micrograms l-1 for both species. Data were in agreement with Zeeman-effect background corrected atomic absorption spectrometry measurements.  相似文献   

3.
Triton X-100 cerium(IV) phosphate (TX-100CeP) was synthesized and characterized by using IR, X-ray, TGA/DT and the elemental analysis. The chemical stability of TX-100CeP versus the different concentrations of HCl acid was studied before and after its exposure to the radiation dose (30 K Gray). The effect of HCl concentration on separation of Cr(III) from Cr(VI) by using TX-100CeP as surface active ion exchanger was also studied. A novel method was achieved for the quantifying of Cr(III) and Cr(VI) ions by using the high-performance liquid chromatography (HPLC) at wavelength 650 nm, a stationary phase consists of reversed phase column (Nucleosil phenyl column; 250 × 4.6 mm, 5 μm), and a mobile phase consists of 0.001 M di-(2-ethylhexyl) phosphoric acid (DEHPA) in methanol:water (70:30 v/v). The retention times were 7.0 and 8.5 min, for the Cr(III) and Cr(VI), respectively. The exchange capacity of Cr(III) was quantified (2.1 meq/g) onto the TX-100CeP.  相似文献   

4.
The reaction of citric acid (caH(4)) with pyridinium dichromate (PDC) in anhydrous acetone yields pyridinium bis[citrato(2-)]oxochromate(V), pyH[CrO(caH(2))(2)], as a mixed salt with the Cr(III) product. The compound persists in the solid state for months, is highly soluble in water (pH 4.0), and gives a sharp electron paramagnetic resonance (EPR) signal in solution (g(iso) = 1.9781, A(iso)(Cr) = 17.1 x 10(-4) cm(-1)), which is characteristic of d(1) Cr(V). The presence of [Cr(V)O(caH(2))(2)](-) in the solid state was confirmed by electrospray mass spectroscopy, X-ray absorption near-edge structure (XANES), and EPR spectroscopy. Solid-state EPR spectroscopy, XANES, and a spectrophotometric assay showed that the solid is a mixture of [Cr(V)O(caH(2))(2)](-) and a Cr(III)-citrate complex. The structures of the [Cr(V)O(caH(2))(2)](-) and [Cr(III)(caH(2))(2)](-) components of the mixture were established by multiple-scattering MS analysis of the X-ray absorption fine structure data. The structure of [Cr(V)O(caH(2))(2)](-) is similar to that of other 2-hydroxy acid complexes with Cr=O, Cr-O(alcoholato), and Cr-O(carboxylato) bond lengths of 1.59, 1.81, and 1.90 A, respectively. The Cr(III) complex has bond lengths typical for ligands with deprotonated carboxylate and protonated alcohol donors with distances of 1.90 and 1.99 A, respectively, for the Cr-O(carboxylato) and Cr-O(alcohol) bond lengths. In aqueous solution, [CrO(caH(2))(2)](-) is short lived, but it is a convenient starting material for ligand-exchange reactions. It has been used to generate short-lived mixed-ligand Cr(V) complexes with citrate and picolinate, iminodiacetate, 2,2'-bipyridine, or 1,10-phenanthroline, which were characterized by EPR spectroscopy. The g values are between 1.971 and 1.974. For the picolinate, 2,2'-bipyridine, and 1,10-phenanthroline mixed-ligand complexes, there is hyperfine coupling (2.2 x 10(-4) to 2.4 x 10(-4) cm(-1)) to a single proton of the citrate ligand.  相似文献   

5.
Complexes of Cr(III):Cu(II) with the glyoxylate dianion as ligand were synthesized in the range of cation atomic ratios (0.01–8):1.0. The results of non-isothermal analysis of the synthesized compounds correlated with the results of IR and UV-VIS spectroscopy, and gas chromatography of the volatile products of the decomposition allowed the formulation of a mechanism for the decomposition of the complex with Cr(III):Cu(II)=2:1 and the assumption that the other complexes are mixtures of this with the homopolynuclear complexes of Cr(III) and Cu(II), depending on the ratio of the cations Cr(III):Cu(II). The thermal conversion of the complexes takes place at relatively low temperatures, with partial transformation of the ligand into oxalate and of the oxide mixture into CuCrO4. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
A simple method was developed for the simultaneous determination of Cr(III) and Cr(VI) by capillary zone electrophoresis (CZE), where Cr(III) was chelated with ligands to form anionic complexes. Nitrilotriacetic acid, N-2-hydroxyethylenediaminetriacetic acid, ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, and 2,6-pyridinedicarboxylic acid (PDCA) were investigated as Cr(III) complexing ligands. Of all the ligands studied, 2,6-PDCA with Cr(III) gave the largest UV response and high selectivity for Cr(III). In addition, the condition for pre-column derivatization, including pH, concentration ratio [Cr(III)/2,6-PDCA] and the stability of Cr(III) complexes were also examined. The separation of anionic forms of Cr(III) and Cr(VI) was achieved using co-CZE with UV detection at 185 nm. The electrolyte contained 30 mM phosphate, 0.5 mM tetradecyltrimethylammonium bromide, 0.1 mM 2,6-PDCA and 15% (v/v) acetonitrile at pH 6.4. The detection limits were 2 microM for Cr(III) and 3 microM for Cr(VI) and linear plots were obtained in a concentration range of 5-200 microM. The utility of the method was demonstrated for the determination of Cr(III) and Cr(VI) in contaminated soils.  相似文献   

7.
Cloud point extraction (CPE) was applied as a preconcentration step for HPLC speciation of chromium in aqueous solutions. Simultaneous preconcentration of Cr(III) and Cr(VI) in aqueous solutions was achieved by CPE with diethyldithiocarbamate (DDTC) as the chelating agent and Triton X-114 as the extractant. Baseline separation of the DDTC chelates of Cr(III) and Cr(VI) was realized on a RP-C18 column with the use of a mixture of methanol-water-acetonitrile (65:21:14, v/v) buffered with 0.05 M NaAc-HAc solution (pH 3.6) as the mobile phase at a flow rate of 1.0 ml min(-1). The precision (R.S.D.) for eight replicate injections of a mixture of 100 microg l(-1) of Cr(III) and Cr(VI) were 0.6 and 0.5% for the retention time, 4.1 and 4.6% for the peak area measurement, respectively. The concentration factor, which is defined as the concentration ratio of the analyte in the final diluted surfactant-rich extract ready for HPLC separation and in the initial solution, was 65 for Cr(III) and 19 for Cr(VI). The linear concentration range was from 50 to 1000 microg l(-1) for Cr(III) and 50-2000 microg l(-1) for Cr(VI). The detection limits of Cr(III) and Cr(VI) were 3.4 and 5.2 microg l(-1), respectively. The developed method was applied to the speciation of Cr(III) and Cr(VI) in snow water, river water, seawater and wastewater samples.  相似文献   

8.
Long X  Miró M  Hansen EH 《The Analyst》2006,131(1):132-140
A novel and miniaturized micro-sequential injection bead-injection lab-on-valve (microSI-BI-LOV) fractionation system was developed for on-line microcolumn soil extraction under simulated environmental scenarios and accurate monitoring of the content of easily mobilisable hexavalent chromium in soil environments at the sub-low parts-per-million level. The flow system integrates dynamic leaching of hexavalent chromium using deionized water as recommended by the German Standard DIN 38414-S4 method; on-line pH adjustment of the extract by a 0.01 mol L(-1) Tris-HNO(3) buffer solution; isolation of the chromate leached from the matrix constituents onto a Q Sepharose strong anion-exchanger freshly packed into the microconduits of the microSI-assembly; air-segmented elution of the sorbed species by a 40 microL plug of 0.5 mol L(-1) NH(4)NO(3) (pH 8) eluent; and detection by electrothermal atomic absorption spectrometry (ETAAS). The effect of simulated acidic rain on the accessibility of chromate forms for plant uptake was also investigated. The proposed approach offers several advantages over conventional speciation/fractionation protocols in the batch mode, including immediate separation with concomitant preconcentration of the released chromate, minimization of Cr(vi) to Cr(iii) interconversion risks, enhanced accuracy, and non-existence of re-adsorption/re-distribution problems along with a detailed pattern of the kinetics of the leaching process. The reliability of the proposed method was evaluated via spiking of a moderately polluted agricultural soil material (San Joaquin Soil-Baseline Trace Element Concentrations) with water-soluble Cr(vi) salts at different concentration levels. The potential of the microSI-BI-LOV set-up with renewable surfaces for flame-AAS determination of high levels of readily bioavailable chromate in contaminated soils is also addressed.  相似文献   

9.
Padarauskas A  Schwedt G 《Talanta》1995,42(5):693-699
A reversed phase ion pair chromatographic method for the simultaneous determination of Cr species and common anions on a C(18)-bonded stationary phase was developed by using acetonitrile-water (2:98 v/v) containing 1.0 mM tetrabutylammonium hydroxide and 0.5 mM trans-1,2-diaminecyclohexane-N,N,N',N'-tetraacetic acid (DCTA) at pH 6.5 as mobile phase and UV-detection at 210 nm. Chromatographic parameters were optimized for separation of Cr(III)-DCTA complex, chromate and other anions. The detection limits were found as 8 ng/ml for Cr(III) and 35 ng/ml for Cr(VI). Under the optimum conditions, most other ions did not interfere. The method can be applied to separate a number of common anions simultaneously with the separation of Cr(III) and Cr(VI).  相似文献   

10.
The flat sheet Raipore R1030 anion exchange membrane has been evaluated as a sample interface in an optical sensor for Cr(VI) monitoring. The R1030 is an anion exchange membrane containing quaternary ammonium groups. The Donnan dialysis (DD) that takes place has been enhanced with facilitated transport of Cr(VI) anions by using a 1,5-diphenylcarbazide (DPC) solution as stripping phase. The DPC acts as a reducing reagent for Cr(VI), and as a complexing reagent for the generated Cr(III). The Cr(III) complex is a strongly absorbing species, and this is the basis of the optical detection. The effect of chemical parameters on Cr(VI) transport has been evaluated. Experiments with UV-VIS detection have shown that the membrane R1030-DPC system exhibits features suitable for Cr(VI) optical sensing. A simplified model based on a kinetic approach is reported describing the transport mechanism of the chemically facilitated DD process.  相似文献   

11.
Fe(0) was investigated as a cost-effective, environmentally friendly alternative to Cr(II) for the olefination of carbonyls by activated polyhalides. In many instances, Fe(0) was equivalent or superior to Cr(II). Notably, Fe(0), but not Cr(II), proved compatible with a wide range of functionality, inter alia, unprotected phenol, aryl nitro, carboxylic acid, and alkyl nitrile. A surprising reversal of stereoselectivity for aldehydes versus ketones was observed using both metals. The resultant alpha-halo-alpha,beta-unsaturated or alpha,beta-unsaturated carboxylic acids, esters, and nitriles are common structural elements in numerous compounds of interest as well as key intermediates in the preparation of other functionality.  相似文献   

12.
A novel approach has been developed for the solid phase extraction of chromium(VI) based on the adsorption of its diphenylcarbazide complex on a mixture of acid activated montmorillonite (AAM)-silica gel column. The effect of various parameters such as acidity, stability of the column, sample volume, interfering ions, etc., were studied in detail. The adsorbed complex could be easily eluted using polyethylene glycol-sulfuric acid mixture and the concentration of chromium has been determined using visible spectrophotometry. The calibration graph was linear in the range 0-1microgmL(-1) chromium(VI) with a detection limit of 6microgL(-1). A highest preconcentration factor of 25 could be obtained for 250mL sample volume using glass wool as support for the mixed bed adsorbent. Chromium(VI) could be effectively separated from other ions such as nickel, copper, zinc, chloride, sulfate, nitrate, etc., and the method has been successfully applied to study the recovery of chromium in electroplating waste water and spiked water samples.  相似文献   

13.
A rapid procedure is described for the separation and determination of 0.025 mg to 1.0 mg quantities of As(V), V(V), Mo(VI) and W(VI) from small quantities of Cu(II), Ni(II), and Zn(II) using silica gel as the selective sorbent for the cations. The individual anionic components, which remain in the supernatant solution after separation from the cations, are determined by colorimetric methods. The complete recovery of As(V) in supernatant solution has also been tested radiometrically using76As as the radioactive indicator. The sorbed cations after extraction with dilute hydrochloric acid are determined by EDTA titrations.  相似文献   

14.
The oxidation of d-galacturonic acid by Cr(VI) yields the aldaric acid and Cr(III) as final products when a 30-times or higher excess of the uronic acid over Cr(VI) is used. The redox reaction involves the formation of intermediate Cr(IV) and Cr(V) species, with Cr(VI) and the two intermediate species reacting with galacturonic acid at comparable rates. The rate of disappearance of Cr(VI), Cr(IV) and Cr(V) depends on pH and [substrate], and the slow reaction step of the Cr(VI) to Cr(III) conversion depends on the reaction conditions. The EPR spectra show that five-coordinate oxo-Cr(V) bischelates are formed at pH < or = 5 with the uronic acid bound to Cr(V) through the carboxylate and the alpha-OH group of the furanose form or the ring oxygen of the pyranose form. Six-coordinated oxo-Cr(V) monochelates are observed as minor species in addition to the major five-coordinated oxo-Cr(V) bischelates only for galacturonic acid : Cr(VI) < or =10 : 1, in 0.25-0.50 M HClO(4). At pH 7.5 the EPR spectra show the formation of a Cr(V) complex where the vic-diol groups of Galur participate in the bonding to Cr(V). At pH 3-5 the Galur-Cr(V) species grow and decay over short periods in a similar way to that observed for [Cr(O)(alpha-hydroxy acid)(2)](-). The lack of chelation at any vic-diolate group of Galur when pH < or = 5 differentiates its ability to stabilise Cr(V) from that of neutral saccharides that form very stable oxo-Cr(V)(diolato)(2) species at pH > 1.  相似文献   

15.
Oxidation of Cr[N(SiMe(3))(2)](2)(THF)(2) with iodine and dicumyl peroxide results in tetrahedral Cr(iv) Cr[N(SiMe(3))(2)](2)I(2) and trigonal planar Cr(iii) Cr[N(SiMe(3))(2)](OCMe(2)Ph)(2), respectively; both complexes have been characterised by single-crystal X-ray diffraction, and both are active for ethylene polymerisation with alkylaluminium co-catalysts.  相似文献   

16.
In this study, a new method for selective determination of Cr(VI) in water samples at pH 4 is presented using raffinose capped silver nanoparticles (Ag/Raff NPs) as an optical sensor. The method is based on the variation of LSPR absorption band intensity as a result of electrostatic interaction between the negatively charged Ag/Raff NPs and positive Cr(III) ions, in-situ produced by chemical reduction of Cr(VI) with ascorbic acid, combined with the fast kinetics of Cr(III) coordination to the –OH groups of the capping agent on the nanoparticle surface, further causing the nanoparticle aggregation. The calibration curve for Cr(VI) is linear in the range 2.5–7.5 μmol L−1, the limit of quantification achieved is 1.9 μmol L−1, and values of relative standard deviation vary from 3 to 5% for concentration level 1.9–7.5 μmol L−1. The interference studies performed in the presence of various metal ions show very good selectivity of Ag/Raff NPs toward Cr(VI) species. The added–found method is used to confirm the accuracy and precision of developed analytical approach.  相似文献   

17.
A novel Pd−NHC functionalized metal–organic framework (MOF) based on MIL-101(Cr) was synthesized and used as an efficient heterogeneous catalyst in the C-C bond formation reactions. Using this heterogeneous Pd catalyst system, the Suzuki−Miyaura coupling reaction was accomplished well in water, and coupling products were obtained in good to excellent yields in short reaction time. The Pd−NHC−MIL-101(Cr) was characterized using some different techniques, including Fourier transform-infrared, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, inductively coupled plasma and elemental analysis. The microscopic techniques showed the discrete octahedron structure of MIL-101(Cr), which is also stable after chemical modification process to prepare the catalyst system. The TEM images of the catalyst showed the existence of palladium nanoparticles immobilized in the structure of the catalyst, while no reducing agent was used. It seems that the NHC groups and imidazolium moieties in the structure of the MOF can reduce Pd (II) to Pd (0) species. This modified MOF substrate can also prevent aggregation of Pd nanoparticles, resulting in high stability of them in organic transformation. The Pd−NHC−MIL-101(Cr) catalyst system could be simply extracted from the reaction mixture, providing an efficient synthetic method for the synthesis of biaryls derivatives using the aforementioned coupling reaction. The Pd−NHC−MIL-101(Cr) catalyst could be recycled in this organic reaction with almost consistent catalytic efficiency.  相似文献   

18.
A new heterogeneous Brønsted solid acid catalyst was prepared by tandem post-functionalization of MIL-101(Cr) and utilized for acetic acid esterification and alcoholysis of epoxides under solvent-free conditions. First, MIL-101(Cr) was functionalized with pyrazine to achieve MIL-101(Cr)-Pyz. Afterwards, the nucleophilic reaction of MIL-101(Cr)-Pyz with 1,3-propane sultone and next acidification with diluted sulfuric acid gave MIL-101(Cr)-Pyz-RSO3H Brønsted solid acid catalyst. Various characterization methods such as Fourier transformation infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), elemental analysis (CHNS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersiveX-ray(EDX) spectroscopy, thermal analysis (TGA/DTA), acid–base titration, and N2 adsorption/desorption analysis were employed to fully characterize the prepared catalyst. The catalyst showed high activity compared to unmodified MIL-101(Cr) in both catalytic acetic acid esterification and alcoholysis of epoxides. It can also be readily isolated from the reaction mixture and reused three times without major decrease in its activity.  相似文献   

19.
Ion-pair chromatography (IPC) with conductometric detection was investigated as a precise and selective analytical method for the determination of chromium in electro-plating solutions and waste waters. Chromatographic parameters were optimized for separation of Cr(VI) and SO(2-)(4). The analytical column (100 x 6 mm) was packed with 10 mum silasorb C(18) (Czechoslovakia). Tetrabutylammonium butyrate (TBAB), at pH 7.0 in acetonitrile-water (18:82 v/v) mixture, was used as the eluent. Two samples of solution are taken for the analysis. In the first of them the amount of Cr(VI) is determined, in the second one Cr(III) is oxidized to Cr(VI) with H(2)O(2) in alkaline medium and the total amount of Cr is determined. From the difference of the two obtained results the concentration of Cr(III) is calculated. The detection limit of Cr(VI) is 0.1 mug/ml and the relative standard deviation (at the 1.0 mug/ml) is 4.0%. The IPC results for chromium agreed closely with these obtained by spectrophotometry.  相似文献   

20.
A simple and rapid method is developed for the simultaneous determination of Cr(VI) and Cr(III) based on the formation of their different complexes with ammonium pyrrolidine-dithiocarbamate (APDC). Separation is performed using reversed-phase high-performance liquid chromatography coupled with UV detection. The conditions for complex formation and speciation are determined, such as solution pH, amount of APDC, temperature, and type of mobile phase. In order to substantially reduce the analysis time, the separation is carried out without extraction of chromium-APDC complexes from the mother liquor. Under the optimum analysis conditions, the chromatograms obtained show good peak separation, and the absolute detection limits (3s) are 2.2 microg/L for Cr(VI) and 4.5 microg/L for Cr(III). The calibration curves are linear from 3 to 5000 microg/L for Cr(VI) and 5 to 3000 microg/L for Cr(III). The relative standard deviations of peak areas in five measurements using a sample solution of 200 microg/L are less than 2% for Cr(VI) and 4% for Cr(III), indicating good reproducibility for this analytical method. Furthermore, simultaneous determination of Cr(VI) and Cr(III) is successful with the application of the proposed procedure in the synthetic wastewaters containing common heavy metal ions: Fe(III), Pb(II), Cd(II), Cu(II), and Zn(II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号