首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new multivalent glycopolymer platform for lectin recognition is introduced in this work by combining the controlled growth of glycopolymer brushes with highly specific glycosylation reactions. Glycopolymer brushes, synthetic polymers with pendant saccharides, are prepared by surface‐initiated atom transfer radical polymerization (SI‐ATRP) of 2‐O‐(N‐acetyl‐β‐d ‐glucosamine)ethyl methacrylate (GlcNAcEMA). Here, the fabrication of multivalent glycopolymers consisting of poly(GlcNAcEMA) is reported with additional biocatalytic elongation of the glycans directly on the silicon substrate by specific glycosylation using recombinant glycosyltransferases. The bioactivity of the surface‐grafted glycans is investigated by fluorescence‐linked lectin assay. Due to the multivalency of glycan ligands, the glycopolymer brushes show very selective, specific, and strong interactions with lectins. The multiarrays of the glycopolymer brushes have a large potential as a screening device to define optimal‐binding environments of specific lectins or as new simplified diagnostic tools for the detection of cancer‐related lectins in blood serum.

  相似文献   


2.
3.
Poly(methyl methacrylate) (PMMA) brushes are grown by surface‐initiated atom transfer radical polymerization on silicon surfaces at various polymerization temperatures. Kinetic studies show that the layer thickness scales linearly with the degree of polymerization of the polymers under some conditions, indicating a constant graft density of the surface‐attached chains. At high temperatures, the layer growth is a controlled process only for short reaction times, and after a rapid increase, the film growth levels off, and a constant thickness is obtained. At lower reaction temperatures, polymers with a lower polydispersity are obtained, but at the expense of a much slower growth rate. Accordingly, intermediate temperatures yield the highest film thickness on experimentally feasible timescales. The reinitiation of these surface‐grafted PMMA chains at room temperature to either extend the chains or grow a chemically different polyglycidylmethacrylate block demonstrates the presence of active ends and the living nature of the surface‐grafted PMMA chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1758–1769, 2006  相似文献   

4.
Summary: A diblock copolymer brush consisting of poly(methyl acrylate)‐block‐poly(pentafluoropropyl acrylate) (Si/SiO2//PMA‐b‐PPFA) was synthesized on a porous silica substrate. The brush was exposed to selective solvents, as well as thermal treatments, to induce a surface rearrangement. The rearrangement resulted in the selective loss or creation of an ultrahydrophobic layer by location of the fluoropolymer segment. This work demonstrates that surface rearrangements observed on flat surfaces can be transferred to porous substrates.

Image of a water droplet in contact with an Si/SiO2//PMA‐b‐PPFA ultrahydrophobic polymer brush, synthesized from a porous silica substrate.  相似文献   


5.
The functionalization of nanoparticle surfaces is required to improve the dispersion of an inorganic material inside an organic matrix. In this work, polystyrene (PS) brushes were grown on the surface of iron oxide magnetic nanoparticles with atom transfer radical polymerization and a grafting‐from approach. After polymerization, the magnetic nanoparticles had a graft density of 0.9 PS chains/nm2. A sacrificial initiator was used to obtain a satisfactory result for the control of the polymerization, as its addition had to generate a sufficient concentration of persistent radicals (deactivator). A variety of techniques, such as Fourier transform infrared spectroscopy, thermogravimetric analysis, gel permeation chromatography, water contact‐angle measurements, and atomic force microscopy, were used to characterize the nanoparticles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4744–4750, 2007  相似文献   

6.
2‐Acrylamido‐2‐methyl‐N‐propanesulfonic acid (AMPSA) was successfully polymerized via atom transfer radical polymerization (ATRP) using a copper chloride/2,2′‐bipyridine (bpy) catalyst complex after in situ neutralization of the acidic proton in AMPSA with tri(n‐butyl)amine (TBA). A 5 mol % excess of TBA was required to completely neutralize the acid and prevent protonation of the bpy ligand, as well as to avoid side reactions caused by large excess of TBA. The use of activators generated by electron transfer (AGET) ATRP with ascorbic acid as reducing agent resulted in both increased conversion of the AMPSA monomer during polymerization (up to 50% with a 0.8 [ascorbic acid]/[Cu(II)] ratio) and much shorter polymerization times (<30 min). Block copolymers and molecular brushes containing AMPSA side chains were prepared using this method, and the solution and surface behavior of these materials were investigated. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5386–5396, 2009  相似文献   

7.
Covalently bonded layered silicated/polystyrene nanocomposites were synthesized via atom transfer radical polymerization in the presence of initiator‐modified layered silicate. The resulting nanocomposites had an intercalated and partially exfoliated structure, as confirmed by X‐ray diffraction and transmission electron microscopy. The thermal properties of the nanocomposites improved substantially over those of neat polystyrene. In particular, a maximum increase of 35.5 °C in the degradation temperature was displayed by these nanocomposites. Additionally, the surface elastic modulus and hardness of these nanocomposites were more than double those of pure polystyrene. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 534–542, 2005  相似文献   

8.
Surface‐enhanced Raman scattering (SERS) has attracted a great deal of interest during the past four decades and emerged as an ultrasensitive optical technique for chemical and biomedical analysis. It is widely accepted that the facile fabrication of SERS substrates with high activity and good reproducibility is of crucial importance for their applications. Herein, we report on a fast and robust method for the synthesis and immobilization of silver nanoparticles (AgNPs) into poly(oligo(ethylene glycol) methacrylate) (POEGMA) brushes under mild conditions without using any reducing agents. POEGMA brushes of different chain lengths were synthesized directly on silicon wafers by surface‐initiated atom transfer radical polymerization with various reaction time. X‐ray photoelectron spectroscopy and field emission scanning electron microscope measurements indicated that the AgNPs were firmly and homogeneously embedded into POEGMA brushes. The resulting POEGMA–AgNP hybrid films were employed as SERS substrates for the detection of 4‐aminothiophenol, giving rise to an enhancement factor of up to 1.9 × 106. The influence of the POEGMA's chain length on SERS performance was also investigated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Although atom transfer radical polymerization (ATRP) is often a controlled/living process, the growth rate of polymer films during surface‐initiated ATRP frequently decreases with time. This article investigates the mechanism behind the termination of film growth. Studies of methyl methacrylate and methyl acrylate polymerization with a Cu/tris[2‐(dimethylamino)ethyl]amine catalyst system show a constant but slow growth rate at low catalyst concentrations and rapid growth followed by early termination at higher catalyst concentrations. For a given polymerization time, there is, therefore, an optimum intermediate catalyst concentration for achieving maximum film thickness. Simulations of polymerization that consider activation, deactivation, and termination show trends similar to those of the experimental data, and the addition of Cu(II) to polymerization solutions results in a more constant rate of film growth by decreasing the concentration of radicals on the surface. Taken together, these studies suggest that at high concentrations of radicals, termination of polymerization by radical recombination limits film growth. Interestingly, stirring of polymerization solutions decreases film thickness in some cases, presumably because chain motion facilitates radical recombination. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 386–394, 2003  相似文献   

10.
The atom transfer radical polymerization (ATRP) technique using the copper halide/ N,N′,N′,N″,N″‐pentamethyldiethylenetriamine complex was applied to the graft polymerization of methyl methacrylate and methyl acrylate on the uniform polystyrene (PS) seed particles and formed novel core‐shell particles. The core was submicron crosslinked PS particles that were prepared via emulsifier‐free emulsion polymerization. The crosslinked PS particles obtained were transferred into the organic phase (tetrahydrofuran), and surface modification using the chloromethylation method was performed. Then, the modified seed PS particles were used to initiate ATRP to prepare a controlled poly(methyl methacrylate) (PMMA) and poly(methyl acrylate) (PMA) shell. The final core‐shell particles were characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning electron microscopy, thermogravimetric analysis, and elementary analysis. The grafting polymerization was conducted successfully on the surface of modified crosslinked PS particles, and the shell thickness and weight ratio (PMMA and PMA) of the particles were calculated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 892–900, 2002; DOI 10.1002/pola.10160  相似文献   

11.
We present results from kinetic studies on the surface‐initiated atom transfer radical polymerization in the preparation of polymer brush‐coated magnetic particles from a heterogeneous system. It is shown that a controlled reaction behavior and a reproducible surface functionalization with end‐tethered polymers are achieved, although the reaction advances gradually from a biphasic solid–liquid mixture to a stable colloidal dispersion of the nanoobjects. Although the initiator‐functional magnetite nanoparticles initially form a precipitate, the formation of a polymer layer on the particle surface in the course of the reaction contributes to a sterical stabilization in dispersion. We thoroughly investigated the development of the initial heterogeneous system with time and in various concentration regimes by simultaneously monitoring the monomer conversion, molar mass, the hydrodynamic diameter of the nanoobjects, and the magnetite content of the dispersions at different reaction times. The results indicate first‐order chain growth kinetics with respect to the monomer and narrow molar mass distributions, demonstrating good control on the particle architecture. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

12.
The role of activator and deactivator species in the surface‐initiated atom‐transfer radical polymerization of styrene using CuBr/CuBr2/pentamethyldiethylenetriamine as a model system is described. The influence of initially added deactivator with respect to the degree of controlling the layer growth and thickness is studied. Variation of the activator concentration results in changes of the kinetics as well as brush thicknesses consistent with the well‐known rate laws of ATRP.  相似文献   

13.
In situ ATRPs of MMA, St in the presence of TD catalyzed by FeCl3/PPh3 and CuBr2/bpy have been studied, respectively. The results showed that the initiator Et2NCS2X (X = Cl or Br) and catalyst FeCl2 or CuBr were formed in situ from the initiating components and the polymerization exhibited living radical polymerization characteristics. In the case of St polymerization with TD/CuBr/bpy initiating system, an inverse ATRP was observed.  相似文献   

14.
Hybrid nanoparticles with a silica core and grafted poly(methyl methacrylate) (PMMA) or poly(n‐butyl methacrylate) (PBMA) chains were prepared via activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP) at room temperature under high pressure. Due to enhanced propagation rate constant and reduced termination rate constant for polymerizations conducted under high pressure, the rate of polymerization was increased, while preserving good control over polymerization when compared to ATRP under ambient pressure. Molecular weights of greater than 1 million were obtained. The PMMA and PBMA brushes exhibited “semi‐diluted” or “diluted” brush architecture with the highest grafting densities ≈0.3 chain·nm−2.

  相似文献   


15.
Short DNA oligonucleotide branches are incorporated into acrylamide brushes via surface initiated atom transfer radical polymerization in an attempt to increase DNA surface density by building three‐dimensional molecular architectures. ATR‐FTIR as well as hybridization studies followed by SPR confirm the incorporation of the DNA sequences into the polymer backbone. MALDI‐TOF analysis further suggests that six acrylamide monomer units are typically separating DNA branches present on a single brushes approximately 26 units long. This new approach offers a promising alternative to SAM‐based nucleic acid and aptamer sensors and could enable the realization of more complex soft materials of controlled architecture capable of both recognition and signaling by including additional optically or electrochemically active moieties.

  相似文献   


16.
PIPAAm-brush grafted glass substrates with various graft densities and chain lengths were prepared via surface-initiated ATRP. Temperature-dependent physicochemical properties of the surfaces were characterized by means of ATR/FT-IR spectroscopy, XPS, AFM, and contact angle measurements. ATRP conditions influence the amount of grafted PIPAAm and the surface wettability and roughness of the substrate. Fibronectin adsorption and EC adhesion increased with decreasing density of PIPAAm brushes. EC adhesion was diminished with increasing PIPAAm graft length. Thus, the preparation of PIPAAm brush surface with various graft densities and chain lengths using the surface-initiated ATRP is an effective method for modulating thermo-responsive properties of surfaces.  相似文献   

17.
Thermoresponsive PIPAAm-brush-grafted glass beads are prepared through siATRP and their physicochemical properties are characterized by micro-nitrogen analysis, XPS, and contact angle measurements. The amount of grafted PIPAAm on glass bead surfaces can be controlled by varying the ATRP reaction time, leading to a modulation of the temperature-dependent wettability of the prepared surfaces. To evaluate a possible use of the beads as cell separation matrices, loading with rat lymphocytes from mesenteric lymph nodes is studied. The results show that the interaction between PIPAAm brushes and lymphocytes can be controlled by modulating PIPAAm brush length and temperature. The PIPAAm-brush-grafted beads might therefore be useful as effective cell separation matrices.  相似文献   

18.
A series of poly(amino (meth)acrylate) brushes, poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA), poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA), poly(2‐(dimethylamino)ethyl acrylate) (PDMAEA), poly(2‐(tert‐butylamino)ethyl methacrylate) (PTBAEMA), has been synthesized via surface‐confined controlled/living radical polymerizations using surface‐confined initiator from silane self‐assembled monolayers (SAMs) on silicon (Si) wafer substrates. Chemical methods and efficacies for two types of living radical polymerization, atom transfer radical (ATRP) and single electron transfer (SET‐LRP), are described and contrasted for the surface confined polymerization of poly(amino (meth)acrylate)s. Effects of solvent, catalyst/ligand system, and temperature on polymerization success were examined. Chemical compositions after each reaction step were characterized with FTIR spectroscopy, contact angle goniometry, and X‐ray photoelectron spectroscopy while the SAM and polymer brush thicknesses were measured with spectroscopic ellipsometry. For the first time, this study demonstrates successful surface‐confined polymerization of a series of poly(amine (meth)acrylate) brushes from Si‐SAM substrates using a copper metal electron donor catalyst. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6552–6560, 2009  相似文献   

19.
Summary: Amphiphilic cylindrical brush‐coil block copolymers consisting of a polystyrene coil and a cylindrical brush block with poly(acrylic acid) side chains are prepared by ATRP of t‐butylacrylate from a block comacroinitiator. Upon acidolysis of the poly(t‐butylacrylate), water‐soluble polymers were obtained that were observed to form micelles consisting of 4–5 block copolymers on average in aqueous solution. The star‐like nature of such micelles was clearly visualized by scanning force microscopy.

Schematic of coil‐cylindrical brush block copolymer PS‐b‐(PiBEMA‐g‐PAA), its AFM image clearly showing the main chain and the PAA corona of the cylindrical brush block.  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号