首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Calorimetric measurements, carried out on aqueous solutions of sodium taurodeoxycholate at different NaCl concentrations, show that the molar heat of dilution decreases with the bile salt concentration and, to a lesser extent, with the NaCl concentration. Circular dichroism spectra, recorded from aqueous solutions of bile salt as a function of concentration, change the sign of the molar ellipticity under 230 nm.1H NMR spectra show an increase of the half-height line width of the C18 methyl group with the concentration of both bile salt and NaCl. These results, together with those inferred from viscosity measurements, favour the assumption of a model, observed from the crystal structure of sodium taurodeoxycholate and based on an equilibrium between two types of helices.  相似文献   

2.
Small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) measurements were accomplished on sodium glycodeoxycholate (NaGDC) aqueous electrolyte solutions as a function of NaGDC and NaCl concentrations with the aim to determine with satisfactory approximation the NaGDC micellar aggregate structure at a gross molecular level, assuming monodispersity. Different conditions of interparticle interactions by varying ionic strength (NaCl concentration from 0 to 0.70 M) and NaGDC concentration (from 0.02 to 0.10 M) were studied. Smeared scattering intensities and electron pair distance distribution functions, radii of gyration, and aggregate heights are in satisfactory agreement with the corresponding functions calculated using a 2(1) helix as model. It is formed by trimers, each one composed by three NaGDC and nine H2O molecules related by a 3-fold rotation axis, and can be described by a hollow cylinder, probably filled by water molecules, characterized by a conventional radius of 23.7 A and a trimer repeat along the helical axis of 3.6 A. The helix is considerably inhomogeneous since the volume of the cylinder occupied by NaGDC molecules is less than one-third of the total. On the other hand, calculations performed with the average radial electronic density of the helix without water molecules or totally filled by water molecules (a NaGDC/H2O molecular ratio of about 1/50) or by using a three-shell average radial electronic density, independently evaluated on absolute scale, do not show significant differences, thus supporting the helical model. The aggregate size increases for all the samples by increasing either the NaCl or NaGDC concentration. The NaGDC low concentration (0.02 M) samples with NaCl within the range 0.30-0.70 M are characterized by short cylindrical aggregates that do not give rise to sensible interference effects. This assertion is supported by the satisfactory fit between the observed apparent mean hydrodynamic radii and the calculated ones by means of the method of Ortega and Garcia de la Torre (J. Chem. Phys. 2003, 119, 9914), valid for rods with a length-to-diameter ratio > or = 0.1 in dilute solution (noninteracting rods). The NaGDC moderate concentration (0.10 M) samples with NaCl within the range 0.20-0.60 M are characterized by cylindrical aggregates that, in the presence of repulsive Coulombic interactions progressively more and more screened, produce interference effects, due to the hard-body repulsion and attractive forces, but the agreement between observed and calculated SAXS data is satisfactory. The results of the low and moderate NaGDC concentration samples seem to indicate that the aggregation number increase, produced by adding 0.10 M NaCl, is constant within an ionic strength range and occurs by the addition of oligomers formed by trimers. The samples with a variable NaGDC concentration (0.02-0.10 M) at a fixed and high NaCl concentration (0.6 M) contain cylindrical aggregates that give rise to an attractive term effect prevailing on the hard-body repulsive one. The same situation seems to occur in the NaGDC moderate concentration samples.  相似文献   

3.
The massive amplification of fluorescence signal observed upon hybridization of as few as five DNA molecules into self-assembled structures formed between a cationic polymer and DNA oligonucleotides is investigated. These superlighting polymer-DNA aggregates were studied by fluorescence spectroscopy, static and dynamic light scattering, and zeta potential measurements in order to characterize the aggregation behavior and to understand the processes involved during DNA detection. Multi-angle laser light scattering was also used to obtain the weight-average aggregate mass (AM), the aggregation number (Nagg), the radius of gyration (Rg), and the dissymmetry ratio (z). These results have been used, together with TEM imaging, to propose a suitable physical model for the aggregates.  相似文献   

4.
The electric field correlation function of light scattered from a polydispersed population of spherical particles having log-normal distribution with varying polydispersity is simulated. The correlation function with different polydispersity is compared with the method of cumulants over a wide range of correlation time. The large positive deviation of the method of cumulants at long correlation time is identified. This necessitates the truncation of the data at long correlation time or use of an appropriate weighting function to eliminate errors in the analysis. A modified cumulant analysis is used to overcome the limitation of truncating the correlation function. QELS data from polydisperse samples of micelles, liposomes and polyaniline nanoparticles are compared using the two methods. This method can be extended to the analysis of other multi-exponential decays such as stress relaxation, positron annihilation and NMR relaxation.  相似文献   

5.
Geometrical calculations of aggregate sizes in the reversed micellar solution phase of the system water/sodium octanoate/decanol at 20 °C have been tested by dynamic light scattering studies. The autocorrelation functions were interpreted in the simplest possible way (monodisperse aggregates, Stokes-Einstein diffusion equations) since the geometrical model does not account for detailed changes in shapes or micellar interactions. The model predicts the main features of micellization in these solutions, i. e., the micelles grow continuously as the concentration of water or the molar ratio water/octanoate increases, association begins at quite low concentrations of water and the surrounding decanolic solvent behaves as pure decanol which is saturated with water.  相似文献   

6.
The dynamics of the E(92)B(18)/water system are studied by dynamic light scattering (DLS) in the liquid, soft gel, and hard gel phases. Both the liquid and the soft gel phases are micellar phases, although the structural order is higher in the soft gel phase than in the liquid phase. The hard gel phase corresponds to a face-centered cubic arrangement of micelles. DLS results show that the dilute liquid phase is characterized by a single characteristic time tau(1) associated with the diffusion of the micelles. In addition, a second characteristic time tau(2) associated with the presence of micellar clusters in the system is identified in the concentrated liquid and in the soft gel phases. According to these results, DLS suggests that the structure of the soft gel phase comprises micellar clusters coexisting with micellar fluid, in good agreement with hypotheses from our previous work. The dynamics of the system slows down as the hard gel phase is approached and a plateau is observed in the DLS correlation function. The structure of the hard gel is "softened" upon increasing temperature and/or decreasing concentration.  相似文献   

7.
The structures of aggregates formed in aqueous solutions of an anionic surfactant, sodium dodecyl sulfate (SDS), with the addition of a cationic hydrotropic salt, p-toluidine hydrochloride (PTHC), have been investigated by small angle neutron scattering (SANS). The SANS spectra exhibit a pronounced peak at low salt concentration, indicating the presence of repulsive intermicellar interactions. Model-independent real space information about the structure is obtained from a generalized indirect Fourier transformation (GIFT) technique in combination with a suitable model for the interparticle structure factor. The interparticle interaction is captured using the rescaled mean spherical approximation (RMSA) closure relation and a Yukawa form of the interaction potential. Further quantification of the geometrical parameters of the micelles was achieved by a complete fit of the SANS data using a prolate ellipsoidal form factor and the RMSA structure factor. The present study shows that PTHC induces a decrease in the fractional charge of the micelles due to adsorption at the micellar surface and consequent growth of the SDS micelles from nearly globular to rodlike as the concentration of PTHC increases.  相似文献   

8.
Quasielastic light scattering provides a direct probe of the diffusional mobility of large particles in solution. Analysis of the light scattering spectra of natural lecithin as a function of scattering angle and concentration in hydrophilic and lipophilic solvents supports the conclusion that the second critical micelle transition is associated with the elongation of spherical molecular aggregates into cylindrical or ellipsoidal particles. The effective radius of the scattering entity below the second critical point is significantly less in nonpolar solvents. The latter result is explained in terms of amphiphilic lipid-solvent interactions.  相似文献   

9.
Colloidal dispersions in hydrocarbons of lead and calcium salts of isooctanoic acids are studied by means of Transmission Electron Microscopy and Light Scattering. The complementary results obtained, using each technique, allow us to investigate the structure of the mineral core, the size and the morphology of the colloidal particles. Special attention is paid to the aggregation properties of the metal salts particles as a function of the dilution and solvent.  相似文献   

10.
11.
The industrial processes of water clarification often imply flocs of millimeter length. The principal motivation of this work relates to the characterization of these large flocs with laser diffractometry, for which the authors propose particular experimental approaches. In addition, a reformulation of the various properties of the flocs accessible by laser diffractometry is presented, in particular for the determination of the size, density, porosity, volume fraction, and fractal dimension. By way of illustration, these experimental and theoretical developments are applied to the characterization of flocs obtained by flocculation of a commercial kaolin. The size, fractal dimension, and density of kaolin floc were examined under various flocculant concentrations. Measurements reveal important variations of the granulometric and textural properties of large flocs in response to flocculation, opening ways of optimization for the associated industrial processes.  相似文献   

12.
The molecular dynamics of glucose dissolved in heavy water have been investigated at 280 K by the technique of quasielastic neutron scattering. The scattering was described by a dynamic structure factor that accounts for decoupled diffusive jumps and free rotational motions of the glucose molecules. With increasing glucose concentration, the diffusion constant decreases by a factor five and the time between jumps increases considerably. Our observations validate theoretical predictions concerning the impact of concentration on the environment of a glucose molecule and the formation of cages made by neighboring glucose molecules at higher concentrations.  相似文献   

13.
The chiral separation of trimetoquinol hydrochloride, which is a bronchodilator (Inolin), and three related compounds by micellar electrokinetic chromatography was investigated using a bile salt as a chiral surfactant. Enantiomers of these compounds, except laudanosoline, were successfully separated within 12 min using a separation tube of effective length 500 mm × 0.05 rum i.d. and a 0.05 M sodium taurodeoxycholate solution of pH 7.0. The observed theoretical plate numbers of the peaks were ca. 150000. Chiral recognition was affected by the structure of bile salts, the pH of the buffer solutions used and the structure of the solutes. Of four kinds of bile salts, successful chiral separation was achieved only using sodium taurodeoxycholate solution under neutral conditions. The method was applied to the optical purity determination of trimetoquinol hydrochloride. The effects of surfactant concentrations and some additives to the micellar solution are briefly described.  相似文献   

14.
 A method for characterizing the particle size and size distribution of multi-sized polymer lattices was developed by combining quasielastic light scattering (QELS) with a centrifuge. Lattices were first fractionated by centrifugation and the different populations of particles were separated in successive steps. The size of these particles was measured by QELS, and the mass fraction of the particles was determined gravimetrically. The particle size and size distribution of several blends of monodisperse lattices and two industrial multi-sized lattices have been measured by this method. The results show that the particle sizes obtained using this method are in good agreement with the expected particle diameters, and that the relative amounts of the different groups of particles in the blends can be accurately determined. The efficiency of centrifuge-QELS was also confirmed by comparison with other techniques such as transmission electron microscopy (TEM), QELS, field-flow fractionation (FFF) and capillary hydrodynamic fractionation (CHDF). However, this method is not suited for the analysis of continuous, broad distributions or mixtures with a high number of different populations. It is better suited for distributions with a small number of families of particles, and then can be used for preparative propose on a laboratory scale. Received: 9 October 1996 Accepted: 7 July 1997  相似文献   

15.
The binding dynamics of the guests acenaphthene, phenanthrene, fluorene, and acenaphthenol with sodium cholate aggregates were studied using laser flash photolysis and fluorescence. The location of the guests in the bile salt aggregate is determined by the guest's hydrophobicity, where acenaphthene, phenanthrene, and fluorene bind to the primary aggregates, while acenaphthenol binds to the secondary bile salt aggregates. The residence time of the guests in the primary aggregates and the access of ionic species from the aqueous phase to the guest in the aggregate depend on the size and the shape of the guest. These results show that bile salt aggregates are adaptable supramolecular host systems.  相似文献   

16.
17.
In this study we examine two methods of enhancement of aggregation of hydrophobically modified chitosan in dilute aqueous solutions: by increasing the content of n-dodecyl substituents, favoring hydrophobic association, and by increasing the amount of added low molecular weight salt, screening the electrostatic repulsion between similarly charged aggregating chains. By static and dynamic light scattering it was demonstrated that at the growth of the content of hydrophobic groups in the polymer (2-4 mol %) and of the amount of salt in solution (0.025-0.1 M) the weight fraction of aggregates increases, but the aggregation number remains unchanged. This behavior was attributed to the core-shell structure of the aggregates, which provides a low surface energy and strong attraction of associating groups inside the core. At the same time, the effects of the content of hydrophobic groups in the polymer and the ionic strength of the solution on the radii of the aggregates are quite different. Increasing the content of hydrophobic groups induces growth of the gyration radii of the aggregates, but does not affect their hydrodynamic radii. These data suggest the expansion of the hydrophobic core of the aggregates and the contraction of their highly swollen shell. On the other hand, increasing the salt concentration leads to a decrease of both the gyration and hydrodynamic radii of the aggregates, which is due to partial screening of electrostatic repulsion between similarly charged units and lowering of the osmotic pressure of counterions confined inside the aggregates.  相似文献   

18.
The size distributions of fibroblast growth factor-2 (FGF-2) in aqueous solutions with neutral pH were investigated with a dynamic light scattering technique. We found that the FGF-2 was distributed in dimer or trimer form at concentrations of 0.1-1.0 mg . mL(-1). An aggregate with a hydrodynamic radius of approximately 90 nm coexisted with this and its proportion increased with a decrease in concentration. At lower concentrations (less than 0.10 mg . mL(-1)) FGF-2 aggregates with an average radius of 80-100 nm were dominant and were stable for more than a day. These FGF-2 solutions were mixed with calcium phosphate solutions to produce a sub-micron sized compound of FGF-2 and hydroxyapatite, which could be used as a biological implant that possessed a pharmacological function for bone formation. By utilizing a transformation from amorphous calcium phosphate to hydroxyapatite, FGF-2 was effectively incorporated into polycrystals of hydroxyapatite.SEM photograph of a mixture of hydroxyapatite and FGF-2.  相似文献   

19.
Okafo  G. N.  Rana  K. K.  Camilleri  P. 《Chromatographia》1994,39(9-10):627-630
Chromatographia - 2,3,4,6-tetra-O-acetyl-β-D-glucopranosyl isothiocyanate derivatives of a number of basic compounds, containing one chiral center, have been prepared. The indirect resolution...  相似文献   

20.
Colloidal dispersions of nanoparticles in thermal base fluids are known to alter their spherical shapes thereby affecting their surface properties. This aspect has been investigated with respect to the effective viscosity of nanofluids presuming the particles to acquire the shape of prolate spheroid. Also, the contributions of the interfacial layer formed around these particles and their possible agglomeration has been taken in to account. The analysis has been carried out by modifying the Krieger and Dougherty model. The relative viscosity of these nanofluids has been computed as a function of volume fraction, particle size and the eccentricity of the particle. The model also incorporates the concept of fractal dimensions. The results thus obtained compare significantly well with the available experimental data and reaffirms an improvement over earlier models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号