首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过低温量热和热分析方法,测定了N-对甲基苯基-N′-(2-吡啶基)脲(以下简称NPMPN′2PU)的低温热容和热力学性质.通过对NPMPN′2PU进行低温量热,得到了NPMPN′2PU在80~370 K 温区的热容曲线,热容曲线光滑,没有任何热异常现象,由此实验热容数据计算出NPMPN′2PU在这段温区内的热力学数据.从DSC实验结果发现, NPMPN′2PU熔化峰值出现在173.86 ℃,熔化焓为204.45 kJ•mol-1.紧接熔化峰后NPMPN′2PU开始分解,分解峰只有一个,分解峰值温度为226.11 ℃.TG和DTG的实验结果表明,NPMPN′2PU失重的峰值为227.2 ℃,这些结果与DSC实验结果吻合.  相似文献   

2.
通过低温量热和热分析方法,测定了N-对甲基苯基-N'-(2-吡啶基)脲(以下简称NPMPN'2PU)的低温热容和热力学性质.通过对NPMPN'2PU进行低温量热,得到了NPMPN'2PU在80~370K温区的热容曲线,热容曲线光滑,没有任何热异常现象,由此实验热容数据计算出NPMPN'2PU在这段温区内的热力学数据.从DSC实验结果发现,NPMPN'2PU熔化峰值出现在173.86℃,熔化焓为204.45kJ·mol-1.紧接熔化峰后NPMPN'2PU开始分解,分解峰只有一个,分解峰值温度为226.11℃.TG和DTG的实验结果表明,NPMPN'2PU失重的峰值为227.2℃,这些结果与DSC实验结果吻合.  相似文献   

3.
邢军  谭志诚  邸友莹  孙晓红  孙立贤  张涛 《化学学报》2004,62(24):2415-2420
用精密自动绝热量热计测定了自行合成并提纯的4,6-二甲氧基-2-嘧啶氨基甲酸甲酯在80~380 K温区的摩尔热容.实验结果表明,在345~360 K温区,该化合物有一固-液熔化过程.经两次重复测定,得其熔化温度、摩尔熔化焓以及熔化熵分别为:(357.201±0.080) K, (26.289±0.029) kJ·mol-1和(73.597±0.070) J·mol-1·K-1.通过分步熔化法得到该物质绝对纯样品的熔点为357.449 K.根据热力学关系和热容数据,计算出了该化合物相对于标准参考温度298.15 K的热力学函数.用DSC和TG热分析技术在300~500 K温区对该物质的热力学性质作了进一步研究,得到与绝热量热法一致的固-液熔化过程热力学参数,并得到该化合物蒸发过程的热力学参数:沸点为488.06 K,摩尔蒸发焓为81.73 kJ·mol-1.  相似文献   

4.
用精密自动绝热量热计测定了2-噻吩乙酸在78~343 K温区内的摩尔热容. 实验结果表明, 在78~314和337~343 K温区内, 该化合物无相变及其他热异常现象发生, 将实验数据拟合得到了该化合物热容随温度变化的多项式方程; 在314~337 K温区内, 该物质发生固-液熔化相变, 其熔化温度、熔化焓、熔化熵及样品纯度分别确定为: 335.745 K, 16.260 kJ•mol-1, 48.415 J•K-1•mol-1和98.555%. 根据热力学函数关系式, 由热容数据计算出了2-噻吩乙酸在80~340 K温区内相对于标准参考温度298.15 K的热力学函数值.  相似文献   

5.
采用绝热量热和热分析技术研究了8-羟基喹啉的热力学性质。用精密绝热量热仪测定了8-羟基喹啉在78 K ~370 K 温区的低温热容。根据实验测定的热容数据计算出了热容拟合方程及热力学函数,得到该物质的熔点、摩尔熔化焓和摩尔熔化熵分别是(345.74±0.15) K、(13.93±0.11) kJ· mol-1 和 (40.26±0.33) J·K-1·mol-1。 根据热力学函数关系式计算了其在78 K ~370 K 温区每隔5 K 的热力学函数 和 。通过部分熔化实验计算出该样品及其绝对纯物质的熔化温度分别是 345.601 K和345.761 K。根据Van’t Hoff方程计算出该样品纯度的摩尔分数为 0.9978。用DSC技术进一步考察了该物质的热稳定性。  相似文献   

6.
稀土钬丙氨酸配合物的热力学性质   总被引:1,自引:0,他引:1  
合成了稀土氯化钬丙氨酸配合物,[Ho2(Ala)4(H2O)8]Cl6,的晶体.用绝热量热法测定了其在78~363 K温区的热容.在214~255 K温区发现一固-固相变,相变峰温、相变焓和相变熵分别为235.09 K,3.017 kJ•mol-1和12.83 J•K-1•mol-1.用最小二乘法将实验热容值拟合成热容随温度变化的多项式方程,利用此方程式和热力学函数关系,计算出以298.15 K为参考温度的热力学函数值.在40~800 ℃温区,用热重分析和差示扫描量热法研究了该配合物的热稳定性,观察到[Ho2(Ala)4(H2O)8]Cl6分两步分解,第一步从80 ℃开始,179 ℃结束;第二步从242 ℃开始,479 ℃结束.从热分析结果推测出该配合物可能的热分解机理.  相似文献   

7.
2-氨基-4,6-二甲氧基嘧啶的低温热容和热力学性质研究   总被引:3,自引:0,他引:3  
通过精密自动绝热量热计测定了自行合成并提纯的2-氨基-4,6-二甲氨基嘧啶 在78-394 K温区的摩尔热容。实验结果表明,该化合物有一个固-液溶化相变,其 熔化温度、摩尔熔化焓以及摩尔熔化熵分别为:(370.97 ± 0.02)K,(29853. 91 ± 9.25) J·mol~(-1)和(80.45 ± 0.03)J·mol~(-1) · K~(-1)。通过分 步熔化法得到样品的纯度为0.9984 (摩尔分数)和绝对纯样品的熔点为371.031 K。 在热容测量的基础上计算出了该物质每隔5K的热力学函数值。DSC技术对基固-溶熔 化过程作了进一步研究,结果与热容试验相一致。  相似文献   

8.
研究了1,3,5-三硝基-六氢化-1,3,5-三嗪-2(1H)-酮(Keto-RDX)的合成新方法,以乌洛托品和硝基胍为原料,通过Mannich反应得到2-硝亚胺基-六氢化-1,3,5-三嗪盐酸盐(NIHT·HCl),用HNO3/AC2O硝化可得Keto-RDX,并采用核磁共振、红外、质谱以及元素分析等进行了结构表征.培养了Keto-RDX单晶,晶体结构解析表明:晶体属于正交晶系,空间群Pnma,晶胞参数a=1.0057(17)nm,b=1.3483(2)nm,c=0.5982(10)nm,V=0.8112(2)nm3,Z=4,Dc=1.933 g/cm3,μ=0.188 mm-1,F(000)=480.差示扫描量热(DSC)法和热失重(TG/DTG)法分析表明,Keto-RDX分解峰温为211.4℃(DSC),在185.00~202.79℃为固相分解阶段,峰温为198.61℃,质量损失为21.45%,在202.79~230.00℃为液相分解阶段,质量损失为77.83%,峰温为213.78℃,热稳定性较RDX差.  相似文献   

9.
用精密自动绝热量热计测定了4-羟甲基吡啶在79~380 K温区的摩尔热容. 实验结果表明, 该化合物在79~301 K温区无相变和热异常现象发生, 在301~331 K, 发生固-液相变, 其熔化温度、摩尔熔化焓及摩尔熔化熵分别确定为:325.12 K, 11.78 kJ•mol-1 和36.23 J•K-1•mol-1. 根据热力学函数关系式, 从热容值计算了4-羟甲基吡啶在80~380 K温区以标准状态(298.15 K)为基准的热力学函数值. 用热重法(TG)对该化合物的热稳定性作进一步考察, 从TG曲线上观察到该化合物在490 K有最大的蒸发失重速率.  相似文献   

10.
通过小样品精密自动绝热量热计测定了合成并提纯的 4,6 二甲基 N 苯基 2 嘧啶胺 (嘧霉胺 )在 78~ 3 91K温区的摩尔热容 .量热实验发现 ,该化合物在 3 63~ 3 72K温区 ,有一固 -液熔化相变过程 ,经三次重复测量 ,得其熔化温度、摩尔熔化焓及摩尔熔化熵分别为 :( 3 70 78± 0 0 8)K ,( 2 1 2 3 3± 0 0 13 )kJ·mol-1 和 ( 5 7 2 7± 0 15 )J·mol-1 ·K-1 .通过分步熔化法得到该物质绝对纯样品的熔点为 3 71 0 3 1K .用差示扫描量热 (DSC)技术对该物质的固 -液熔化过程作了进一步研究 ,结果与绝热量热法一致  相似文献   

11.
通过精密自动绝热热量计测量了自己合成并提纯1-甲基-3,5-二苯基-吡唑在78~370K温区的摩尔热容。实验结果表明,这个化合物有一个固-液熔化相变,其熔化温度、摩尔熔化焓以及摩尔熔化熵分别为:(332.903±0.152)K,(17463.48±21.81)J·mol^-1和(52.55±0.06)J·mol^-1·K^-1。通过分步熔化法得到样品的纯度和绝对纯样品熔点分别为:0.9954(摩尔分数)和333.115K。在热容测量的基础上计算出了该物质每隔5K的热力学函数值。用DSC技术对该物质的固液熔化过程作了进一步研究,结果与热容实验相一致。  相似文献   

12.
Sm(Val)Cl3·6H2O低温热容及热化学性质   总被引:3,自引:0,他引:3  
采用精密绝热量热计测定了稀土氨基酸配合物[Sm(Val)Cl3·6H2O]在80-376 K温区的热容,从实验热容值计算出了热力学函数(HT-H298.15和ST-S398.15).在308 K附近,配合物的热容出现一个大的跳跃.可能是其玻璃化转变所致.对该配合物进行热重测试,得到了其可能的分解机理.  相似文献   

13.
采用精密绝热量热计测定了稀土氨基酸配合物[Sm(Val)Cl3·6H2O]在80-376 K温区的热容, 从实验热容值计算出了热力学函数(HT-H298.15和ST-S298.15). 在308 K附近, 配合物的热容出现一个大的跳跃, 可能是其玻璃化转变所致. 对该配合物进行热重测试, 得到了其可能的分解机理.  相似文献   

14.
利用精密自动绝热热量计直接测定了配合物Zn(Met)SO4·H2O(s)在78~370K温区的摩尔热容.通过热容曲线的解析得到该配合物的起始脱水温度为T0=329.50K.将该温区的摩尔热容实验值用最小二乘法拟合得到摩尔热容(Cp,m)对温度(T)的多项式方程,并且在此基础上计算出了它的舒平热容值和各种热力学函数值.依据Hess定律,通过设计热化学循环,选择体积为100cm3、浓度为2mol·L-1的盐酸作为量热溶剂,利用等温环境溶解-反应热量计,测定和推算出该配合物的标准摩尔生成焓为?fHms=-(2069.30±0.74)kJ·mol-1.  相似文献   

15.
邸友莹  李爽  孟霜鹤  谭志诚  屈松生 《化学学报》2000,58(11):1380-1385
通过精密自动绝热热量计测定了2-碘-3-硝基甲苯(C~7H~6INO~2)在79~373K温区的摩尔热容。实验结果表明,这个化合物在331~340K温度区间有一个固-液熔化相变,其熔化温度、摩尔熔化焓、摩尔熔化熵以及该样品的化学纯度分别为:(339.311±0.13)J·mol^-^1·K^-^1和99.73%。用热容多项式议程进行数值积分获得了该物质在298.15~370K温区每隔5K的热力学函数值。用DSC分析对它的固-液相变过程作了进一步的研究。  相似文献   

16.
八水氢氧化钡Ba(OH)2×8H2O(s)因相变潜热大使其作为胶囊化相变储能材料的应用已受到人们的广泛关注, 但是其热力学性质数据依然缺乏. 本文利用精密自动绝热量热计准确测定了八水氢氧化钡Ba(OH)2×8H2O(s)在78-370 K温区的低温热容. 在热容曲线上发现在345-356 K温区有一个明显的吸热峰. 通过分析发现, 这个峰对应着样品的熔化和第一次脱水的焓变之和. 用最小二乘法将78-345 K和356-369 K两个温区的摩尔热容实验值分别拟合成了热容对温度的多项式方程. 通过在温区298-370 K内的三次重复热容测量,得到了相转变所对应的峰温、焓变和熵变分别为:(355.007 ± 0.076) K, (73.506 ± 0.011) kJ×mol-1 and (207.140 ± 0.074) J×K-1×mol-1. 通过两个热容多项式方程的数值积分计算出了这个化合物的舒平热容值和相对于298.15 K的热力学函数,(HT - H298.15K) 和 (ST - S298.15K). 另外,利用DSC和TG-DTG技术对这个化合物的热分解行为进行了进一步的研究. 从实验结果的分析知, 这个化合物的相转变的潜热之所以变得比正常化合物的大, 主要原因是它融化过程中伴随着7 H2O 和脱出.  相似文献   

17.
本文用绝热量热计测定了2-氯-6-(三氯甲基)吡啶在13—316K温区内的热容。没有发现该化合物在此温区内有相变或热异常现象。用有效频率分布法将实验热容值拟合成平滑曲线并外推至OK,得到13K以下的热容值。将本文数据与前文数据结合,导出了该化合物在0—400K温区内的标准热力学函数。当T=298.15K时,该化合物的C°_P(T),S°(T)—S°(0),[H°(T)—H°(0)]/T和—[G°(T)—H°(0)]/T分别为189.35,244.60,112.45和132.15 J K~(-1) mol~(-1)。  相似文献   

18.
本文用精密自动绝热量热仪测定了2-甲基-2-丁醇在80~305 K温区的热容,从热容曲线(Cp-T) 发现三个固-固相变和一个固-液相变, 其相变温度分别为T = 146.355, 149.929, 214.395, 262.706 K。从实验热容数据用最小二乘法得到以下四个温区的热容拟合方程。在80~140K温区, Cp,m = 39.208 + 8.0724X - 1.9583X2 + 10.06X3 + 1.799X4 - 7.2778X5 + 1.4919X6, 折合温度X = (T –110) / 30; 在 155 ~ 210 K温区, Cp,m = 70.701 + 10.631X + 12.767X2 + 0.3583X3 - 22.272X4 - 0.417X5 + 12.055X6, X = (T –182.5) /27.5; 在220 ~ 250 K温区, Cp,m = 99.176 + 7.7199X - 26.138X2 + 28.949X3 + 0.7599X4 - 25.823X5 + 21.131X6, X = (T – 235)/15; 在 270~305 K温区, Cp,m =121.73 + 16.53 X- 1.0732X2 - 34.937X3 - 19.865X4 + 24.324X5 + 18.544X6, X = (T –287.5)/17.5。从实验热容计算出相变焓分别为0.9392, 1.541, 0.6646, 2.239 kJ×mol-1; 相变熵分别为6.417, 10.28, 3.100, 8.527 J×K-1×mol-1。根据热力学函数关系式计算出80~305 K温区每隔5 K的热力学函数值 [HT –H298.15]和 [ST –S298.15]。  相似文献   

19.
合成了新型镧三元配合物La(Glu)(Im)6(ClO4)3·4HClO4·4H2O(Glu, 谷氨酸; Im, 咪唑). 用高精度全自动绝热量热仪测定了该配合物晶体80-390 K温区的热容, 利用实验热容数据, 建立了热容随温度变化的多项式方程; 根据焓、熵与热容的关系, 求出了配合物在80-390 K温区内相对于298.15 K的标准热力学函数(HT-H298.15)和(ST-S298.15). 绝热量热和差示扫描量热(DSC)分析均发现配合物在216和246 K附近存在玻璃态和晶型转变, 其机理可能是配合物中高氯酸根离子重取向运动. 用热重法(TG)检测了配合物的高温热稳定性并提出了可能的热分解机理.  相似文献   

20.
采用综合物性测量系统(PPMS)的热容测量模块在1.9-300 K温度区间内对两种药物中间体(尿嘧啶和5-溴尿嘧啶)的低温热容进行了测量与研究. 结果表明, 在测量温区内两种化合物的低温热容随温度的上升而逐步增加, 无任何热异常现象产生; 在相同温度下, 5-溴尿嘧啶的热容数值始终高于尿嘧啶. 利用低温热容理论模型对热容数据进行了拟合, 并计算得到了0-300 K温区的摩尔熵变、焓变等热力学函数. 此外, 通过热容拟合数据计算得到的尿嘧啶和5-溴尿嘧啶在298.15 K的标准摩尔规定熵分别为(132.48±1.32)和(165.39±1.65) J·K-1·mol-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号