首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The photolysis of aqueous solutions of cis -[Cr(C2O4)2(H2O)2]- at 254 nm and pH 4 produced CO2 and H2 in nearly equal yields. The quantum yield of hydrogen, φ2, increased by 9% and the yield of carbon dioxide, φ, by 65% as the pH was lowered from 4 to I. The total gas yield, φgas, decreased in the presence of added oxalate or chromium (II) ions and when the light intensity was lowered. The gas yield in D2O was appreciably higher than in H2O. The variation of φgas with pH (D) and with added oxalate ion was roughly parallel in the two liquid media. The gas yield increased in the series:
A tentative mechanism is suggested to explain the results.  相似文献   

2.
Abstract— Strains of Escherichia coli carrying the four possible combinations of the alleles nur, nur+, uvrAb, and uvrA + were either untreated or pretreated with a sublethal dose of H202 prior to inactivation with NUV radiation. Pretreated cells exhibited a greater resistance to NUV than did untreated cells. Pretreatment with H2O2 did not induce resistance to FUV radiation. The induction of resistance to NUV inactivation by H2O2 pretreatment apparently leads to protection against the damage caused by NUV radiation. Although pretreatment of cells with H202 leads to resistance of such cells to inactivation by H2O2 and NUV, survival of H2O2 treated bacteriophage PI cml clr100 is not enhanced when assayed on H2O2 pretreated E. coli host cells.  相似文献   

3.
Abstract— We report the detection of a weak near-infrared light emission originating from 8 nM singlet molecular oxygen (1O2) produced in a mixture of 1 m M hypochlorite (OC1-) and 8 n M hydrogen peroxide (H2O2). The measurements were made with a highly sensitive detection system for ultraweak light emission in the 1.0-1.5 μm wavelength region. The emission intensity exhibited linear dependence for H2O2 concentrations in the range of 8-670 n M . The mixture containing a lower concentration (33 μ M ) of OCl- pseudocontinuously emitted near-infrared light for 5 s. The rate constant for 1O2 production obtained from the kinetic analysis agrees with that previously reported. Our results demonstrate the possibility of measuring very low concentrations of 1O2 in a OCi-/H2O2 mixture as well as 1O2 production in intact living systems.  相似文献   

4.
Abstract— –In the light, isolated spinach thylakoids consumed O2 in the presence of methylviologen, and ascorbate was found to interact with this reaction in various ways. Chelating-resin was used to remove metal impurities from the assay medium. Ascorbate diminished the H202 pool in resin-untreated solutions, while in resin-treated solutions ascorbate had no effect on H2O2 concentrations. A Fenton catalyst (Fe-EDTA) increased O2 uptake in the presence of ascorbate and decreased the amount of O2 recovered by catalase. Ascorbate tripled the rate of the methylviologen-mediated Mehler reaction, and the O2 consumed was liberated to 50% of its original concentration by catalase. Superoxide dismutase reversed the effects of ascorbate on the Mehler reaction rates. These results indicate that ascorbate can stimulate Mehler reactions indirectly by promoting a Fenton-type reaction as well as stimulating Mehler reactions directly by reducing 2O2- to 2H2O2. The promotion of a Fenton-type reaction by ascorbate appears to be the cause of H2O2 depletion in resin-untreated solutions.  相似文献   

5.
Abstract In the presence of the photosensitizer riboflavin at high fluence rates a photoproduct, most probably H2O2, is formed which causes negative phototaxis in the colorless flagellate Polytomella magna . The aim of this study was to find out whether H2O2 is produced in a type I or II reaction. As has been shown, 1O2 quenchers either do not influence the photodynamic action of riboflavin (furfuryl ethanol, DPBF, l -histidine, crocetin) or show slight quenching effects only at very high concentrations ≧ 10−2 M (DABCO, DMF, imidazole). D2O is toxic to P. magna even in 1:1 and 1:2 mixtures with H2O. On the other hand, the quenching effect of 1,4-benzoquinone, highly indicative for the type I pathway, is more than two orders of magnitude stronger than the one of the above mentioned 1O2 quenchers. The results suggest that H2O2 is produced in a type I reaction. Superoxide does not seem to be involved since superoxide dismutase does not diminish the photodynamic effect of riboflavin.  相似文献   

6.
Abstract— The oxidation of purpurogalline (PPG) by alkaline solution of H2O2 pH 9–11 at 298°K is accompanied by chemiluminescence (CL) in the spectral range 400–600 nm with the maximum at 500 nm and quantum yield about 10-6. The optimal concentrations of reactants with respect to maximal intensity are: 2 × 10-4 M PPG, 10-2 M NaOH, 1 M H2O2. Activation energy calculated from the maximum intensity of CL is 8.1×0.4 kcal/mole. Light emission occurs only when OH-groups of the phenolic ring of PPG undergo oxidation and the blue anion of o -PPG-quinone is formed. The rate that determines step in the reaction associated with luminescence is the nucleophilic attack of OOH- ion on the blue anion of o -PPG-quinone. In this exergonic step (-ΔH = 63 to 230kcal/mole) the o - and/or p -quinone ring is opened and carbonyl derivatives of α-tropolone are produced. They display fluorescence in the region 400–600 nm. The fluorescence spectrum of the reaction mixture after oxidation of PPG is very close to that of CL. It is likely that carbonyl derivatives of α-tropolone are emitters of CL.  相似文献   

7.
Abstract— The catalytic action of protohematin was studied during the H2O2-dependent chemiluminescent luminol reaction. In spite of the fact that the catalyst was ultimately inactivated, the average protohematin molecule catalyzed the consumption of about 103 molecules of luminol. The inactivation of catalyst and the initial consumption of luminol were studied during the luminescent reaction with different concentrations of reactants. A scheme accounting for the experimental observations is proposed. The formation of a primary protohematin-H2O2 complex is followed by binding of luminol, resulting in a ternary complex. A nucleophilic attack by a second molecule of H2O2 on the luminol molecule results in light emission from excited aminophthalate via a hypothetical peroxide adduct. The destruction of protohematin occurs via the attack of H2O2 on the porphyrin structure of the protohematin-H2O2 complex. Second order rate constants for the destruction of protohematin, the formation of the luminol complex and the nucleophilic attack of H2O2 are presented.  相似文献   

8.
Kinetic and mechanistic aspects of the vitamin B2 (riboflavin [Rf])-sensitized photo-oxidation of the imidazoline derivates (IDs) naphazoline (NPZ) and tetrahydrozoline (THZ) were investigated in aqueous solution. The process appears as important on biomedical grounds, considering that the vitamin is endogenously present in humans, and IDs are active components of ocular medicaments of topical application. Under aerobic visible light irradiation, a complex picture of competitive interactions between sensitizer, substrates and dissolved oxygen takes place: the singlet and triplet (3Rf*) excited states of Rf are quenched by the IDs: with IDs concentrations ca.  5.0 m m and 0.02 m m Rf, 3Rf* is quenched by IDs, in a competitive fashion with dissolved ground state oxygen. Additionally, the reactive oxygen species: O2(1Δg), O2•−, HO and H2O2, generated from 3Rf* and Rf •−, were detected with the employment of time-resolved methods or specific scavengers. Oxygen uptake experiments indicate that, for NPZ, only H2O2 was involved in the photo-oxidation. In the case of THZ, O2•−, HO and H2O2 were detected, whereas only HO was unambiguously identified as THZ oxidative agents. Upon direct UV light irradiation NPZ and THZ generate O2(1Δg.), with quantum yields of 0.2 (literature value, employed as a reference) and 0.08, respectively, in acetonitrile.  相似文献   

9.
Although the first reactive oxygen species (ROS) formed during irradiation of photosensitized cells is almost invariably singlet molecular oxygen (1O2), other ROS have been implicated in the phototoxic effects of photodynamic therapy (PDT). Among these are superoxide anion radical (O2), hydrogen peroxide (H2O2) and hydroxyl radical (OH). In this study, we investigated the role of H2O2 in the pro-apoptotic response to PDT in murine leukemia P388 cells. A primary route for detoxification of cellular H2O2 involves the peroxisomal enzyme catalase. Inhibition of catalase activity by 3-amino-1,2,4-triazole led to an increased apoptotic response. PDT-induced apoptosis was impaired by addition of an exogenous recombinant catalase analog (CAT- skl) that was specifically designed to enter cells and more efficiently localize in peroxisomes. A similar effect was observed upon addition of 2,2'-bipyridine, a reagent that can chelate Fe+2, a co-factor in the Fenton reaction that results in the conversion of H2O2 to OH. These results provide evidence that formation of H2O2 during irradiation of photosensitized cells contributes to PDT efficacy.  相似文献   

10.
Abstract— The accumulation of (J-carotene in the ph/ph + y diploid strain of the smut fungus Ustilago violacea was associated with reduced killing and lower levels of induced mitotic recombination compared to the β-carotene lacking ph/ph+ w strain in response to both incandescent photosensitization and treatment with H202. The ph/ph+ y strain was only slightly more resistant to killing by exogenous toluidine blue (TB) photosensitization. The ph/ph+ y strain exhibited significantly greater levels of survival when exposed to incandescent radiation and 1.5 μ.M TB for 15 min, as well as 3.0. 0.3, 0.03, 0.003% H202 in the dark. The ph/ph+ y strain also exhibited lower levels of mitotic recombination after endogenous TB photosensitization and the latter two H202 treatments. Similar survival results were obtained for the carotene accumulating haploid strain l.C2y and the carotene lacking haploid strain l.C2iv in response to H202 exposure.  相似文献   

11.
Abstract— Using isolated chloroplasts and techniques as described by Joliot and Joliot[6] we studied the evolution of O2 in weak light and light flashes to analyze the interactions between light induced O2 precursors and their decay in darkness. The following observations and conclusions are reported: 1. Light flashes always produce the same number of oxidizing equivalents either as precursor or as O2. 2. The number of unstable precursor equivalents present during steady state photosynthesis is ∼ 1.2 per photochemical trapping center. 3. The cooperation of the four photochemically formed oxidizing equivalents occurs essentially in the individual reaction centers and the final O2 evolution step is a one quantum process. 4. The data are compatible with a linear four step mechanism in which a trapping center, or an associated catalyst, ( S ) successively accumulates four + charges. The S 4+ state produces O2 and returns to the ground state S 0. 5. Besides S 0 also the first oxidized state S + is stable in the dark, the two higher states, S2+ and S3+ are not. 6. The relaxation times of some of the photooxidation steps were estimated. The fastest reaction, presumably S *1← S 2, has a (first) half time ≤ 200 μsec. The S *2 state and probably also the S *0 state are processed somewhat more slowly (˜ 300–400 μsec).  相似文献   

12.
Abstract— The apparent K m for O2 in the photoreduction of molecular oxygen by spinach class II chloroplasts and photosystem I subchloroplast fragments was determined. In both cases, a value of 2 ∼ 3 μ M O2 was obtained. The reaction rate constant between O2 and P-430, the primary electron acceptor of PS I, is estimated to be ∼ 1.5 × 107 M -1 s-1 and the factors affecting the production of superoxide by the photoreduction of O2 in chloroplasts are discussed. Preliminary evidence is presented indicating the occurrence of an azide-insensitive scavenging system for H2O2 in chloroplast stroma.  相似文献   

13.
Abstract— In many biological systems, the role of O2- in hydroxylation and toxic processes was assumed to be due to the formation of OH radicals. The Haber-Weiss reaction (Haber and Weiss, 1934)—(H2O2+ O2-→ OH + OH-+ O2) was suggested as the origin of this activity.
In this study it is shown that this reaction pathway is too slow, and that OH is probably formed from the reaction of complexed superoxide with H2O2 or/and from the reduction of Fe(III), bound to biological compounds, by O2-; the reduced Fe(II) can then react with H2O2 as a Fenton reagent, to yield OH.
It is also shown that singlet oxygen cannot be formed in these biological systems neither from the dismutation of OJ nor from the reaction of O2- with OH. Singlet oxygen may be formed from the reduction of metal complexes by O2-.  相似文献   

14.
The efficacy of UV and vacuum-UV (VUV) disinfection of Bacillus subtilis spores in aqueous suspensions at wavelengths of 172, 222 and 254 nm was evaluated. A Xe2* excilamp, a KrCl* excilamp and a low-pressure mercury lamp were used as almost monochromatic light sources at these three wavelengths. The first-order inactivation rate constants at 172, 222 and 254 nm were 0.0023, 0.122 and 0.069 cm2 mJ−1, respectively. Therefore, a 2 log reduction of B .  subtilis spores was reached with fluences (UV doses) of 870, 21.6 and 40.4 mJ cm−2 at these individual wavelengths. Consequently, for the inactivation of B .  subtilis spores, VUV exposure at 172 nm is much less efficient than exposure at the other two wavelengths, while exposure at 222 nm is more efficient than that at 254 nm, which is probably because triplet energy transfer from DPA to thymine bases at 222 nm is higher than that at 254 nm. This research indicated quantitatively that VUV light is not practicable for microorganism disinfection in water and wastewater treatment. However, in comparison with other advanced oxidation processes ( e.g. UV/TiO2, UV/H2O2 or O3/H2O2) the VUV-initiated photolysis of water is likely more efficient in generating hydroxyl radicals and more effective for the inactivation of microorganisms.  相似文献   

15.
Abstract— Maximum chemiluminescence in a system containing 6-hydroxydopamine (6-OHDA) and H2O2 required the addition of Fe2+:EDTA, oxygen, and lucigenin. In this system luminescence was strongly inhibited by catalase (91% inhibition) or 50 m M mannitol (83%), whereas superoxide dismutase or ascorbate did not significantly change the reaction rate. In the absence of lucigenin, 50 m M mannitol (78%), catalase (76%), or ascorbate (73%) inhibited strongly, while superoxide dismutase inhibited by 60%. Removing EDTA from the lucigenin-containing system caused a 79% decrease in luminescence, while the substitution of desferoxamine for EDTA decreased luminescence by 55%. In the presence of desferoxamine plus EDTA the luminescence increased by 30% in comparison with that seen with EDTA alone. Luminescence in the system containing 6-hydroxydopamine, H2O2, Fe2+:EDTA and lucigenin required the presence of oxygen (93% inhibition anaerobically), consistent with a mechanism involving reductive oxygenation of the lucigenin. It is concluded that luminescence in the presence of lucigenin involves a substantial contribution from H2O2 and Fe2+ mediated by a mannitol-sensitive intermediate (conceivably Fenton-derived hydroxyl radicals). In the absence of lucigenin, superoxide and an ascorbate-labile component are additional important participants in the process.  相似文献   

16.
Abstract— Peroxidation of tannins with alkaline H2O2 is accompanied by weak chemiluminescence in the spectral region 480–800 nm. o-Di and tri-hydroxy groups of polyphenols undergo oxidation by a free-radical mechanism and a green intermediate anion-radical with absorption Δmax= 600 nm is formed. The radical mechanism is supported by the low activation energy 14–20 kJ/mol and the quenching effect of radical scavengers. The reaction of the green intermediate with peroxy anions is the chemiluminescence rate limiting step. In the presence of a-hydroxy-methylperoxide formed from H2O2 and formaldehyde, the alkaline peroxidation of tannins is accompanied by strong red luminescence (420–800 nm). The base catalyzed decomposition of peroxides gives only a weak red emission (460–800 nm). Light intensity is enhanced in D2O by a factor 6.5. Quenchers of O2(1Δg) and 1,3-di-phenylisobenzofurane diminish light intensity in non-aqueous solutions. The data suggest 1O2 participation in the observed chemiluminescence. Thermo-chemical calculations give —ΔH values from 250–1000 kJ/mol for one elementary reaction step which limits the mechanism of chemi-enereization. Chemiexcitation of tannins is relevant to biochemical mechanisms of aerobic degradation of aromatic compounds, energy utilization as well as to defense and resistance processes in plants.  相似文献   

17.
Abstract— The absorption spectra, lifetimes, extinction coefficients and intersystem crossing quantum yields of the lowest triplet T 1 of 4-thiouridine have been determined both in acetonitrile and in water. An ordering of 1,3(n,π)* and 1,3(π,π)* states is suggested. Triplet quenching rate constants with various pyrimidine bases or amino acids are reported.  相似文献   

18.
Abstract— This study focuses on the fact that the chemiluminescence in the visible region is emitted from the H2O2/gallic acid/ horseradish peroxidase (HRP) and the H2O2/gallic acid acetaldehyde (MeCHO) systems. The concentration dependence of chemiluminescence intensity that led to the different response of HRP and MeCHO toward H2O2 indicates that the photon emission participates with peroxidase activity including an electron transfer reaction. From our experimental results, in this study, we postulated a reaction process for chemiluminescence based on a one-electron redox shuttle from H2O2 by peroxidase. The photon intensity and spectra data from the H2O2/ HRP and the H2O2/MeCHO systems with various cate-chins were not only affected by HRP and MeCHO but also corresponded with the chemical structure of cate-chins. The energy calculated from the spectra is 47–64 kcal/mol. These results suggested that the chemiluminescence of both systems arose from excited carbonyl compounds produced by an intermediate of the alkyl radical and the metal-bound hydroxyl (compound II species). Hydroxyl radical inhibition, showing a notable increase from the gallic acid addition, makes the decay of the hydroxyl form of heme iron the most likely candidate for the chemiluminescence.  相似文献   

19.
Abstract— The bioluminescent oxidation of reduced flavin mononucleotide by bacterial luciferase involves a long-lived flavoenzyme intermediate whose chromophore has been postulated to be the 4a-sub-stituted peroxy anion of reduced flavin. Reaction of long chain aldehyde with this intermediate results in light emission and formation of the corresponding acid. These experiments show that the typical aldehyde-dependent, luciferase-catalyzed bioluminescence can also be obtained starting with FMN and H2O2 instead of FMNH2 and O2. We postulate that the 4a-peroxy anion intermediate is formed directly by attack of H2O2 on FMN. The latter may be bound to luciferase. An enzyme bound intermediate is formed which by kinetic analysis, flavin specificity for luminescence, aldehyde dependence, and bioluminescent emission spectrum appears to be identical with the species generated by reaction of FMNH, and O2 with luciferase. The quantum yield of the H2O2-- and FMN-initiated biolumlnescence is low but can be enhanced by certain metal ions, which also stimulate a chemiluminescent reaction of oxidized flavin with H2O2. The peak of this chemiluminescence. however, appears to be at a shorter wavelength than that (490 nm) of the bioluminescence.  相似文献   

20.
Abstract A continuous argon laser has been used to study the self-sensitized photooxidation of potassium rubrene-2,3,8,9-tetracarboxylate in oxygen-saturated H2O and D2O. An analysis of the data obtained in concentrated solutions leads to an unexpected high value of the ratio of 1O2 lifetimes in D2O and H2O, T d 2o/T h 2o =17 ± 1. Results obtained in diluted aqueous solutions are interpreted in terms of a re-encounter of 1O2 and ground state substrate molecules generated in the same triplet—triplet annihilation act.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号