首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
合成气制低碳燃料醇工业侧线模试   总被引:1,自引:1,他引:0  
在接近工业操作条件下,综合考察催化剂制备放大、工业粒度催化剂、反应器放大及工业合成气等放大效应对合成气制低碳燃料醇催化反应的影响。在模试反应器中采用多段蛇管换热及移热与催化剂床层合理稀释,从而保证反应温度均匀。在模试中较系统地考察了温度、压力、空速及合成气中CO_2含量对合成低碳燃料醇反应的影响。在400—405℃,14—15MPa,尾气空速4000h~(-1)条件下进行了1000小时寿命试验,结果良好。低碳燃料醇的时空产率为0.21—0.25升醇/升催化剂/小时。在燃料醇中,甲醇占74—77%,异丁醇12—15%。本工作为合成气制低碳燃醇料工业试验装置的基础设计提供数据。  相似文献   

2.
近年来,CO/H_2催化合成低碳混合醇的研究受到广泛的关注。低碳混合醇可作为掺合汽油的助溶剂、燃料和代油品,一经分离则是非常重要的化工原料,应用价值很大。催化剂是合成过程的关键,七十年代以来该领域研究取得很大进展,如美国Dow公司开发的MoS_2体系,意大利Sham公司研制的“甲基燃料”合成催化剂及法国IFP开发的混合氧化物型“乙基燃料”合成催化剂等,引起人们的极大重视。催化剂的表面  相似文献   

3.
CO+H_2合成低碳醇是由煤制取液体燃料和化工原料的主要途径之一。随催化剂不同,可以合成以甲醇和异丁醇为主,用作汽油掺合剂的低碳燃料醇,也可得到以正构醇为主,用以生产化工原料用的醇类的低碳化学醇。这两种合成醇中异构体多,水份多,因此用填充柱分离,常有一定困难。1987年徐淑英用OV-101毛细管柱对  相似文献   

4.
采用共沉淀法制备CuZnAl类水滑石,将其担载于活化碳纤维(ACFs)表面,通过焙烧还原合成功能化复合催化剂(CuZnAl/ACFs)。借助XRD、FT-IR及N2吸附-脱附等方法对该复合物进行表征,并将其应用于合成气制备低碳醇的反应中,进行活性评价。结果表明,复合催化剂中活性组分在碳纤维表面均匀分散,碳纤维表面催化剂的颗粒尺寸减小,比表面积增大。ACFs的导电性加速醇合成过程中的电子传递,促进反应进行,因而CO转化率的提高(最高可达47%)。同时,ACFs提高催化剂表面ZnO的分散度,从而促进Cu与ZnO形成金属氧化物界面。这有利于低碳醇的生成,因而使C2以上醇的选择性高达39%。  相似文献   

5.
根据单层分散原理,设计了制备单层(或亚单层)分散型的合成低碳混合醇耐硫催化剂MoS_2/K_2CO_3/γ-Al_2O_3的新方法:先把比MoS_2易于分散的MoO_3分散到γ-Al_2O_3表面上形成单层或亚单层分散的MoO_3/γ-Al_2O_3母体,再进行硫化/还原,最后添加K_2CO_3。CO加氢反应结果证实:(1)该催化剂具有良好的抗硫性能;(2)以单个Mo原子计的活性较非单层(或亚单层)分散型的催化剂的活性成倍增加;(3)使低碳混合醇中C_2~+OH的含量增加,更符合作为汽油添加燃料的要求。  相似文献   

6.
煤间接液化研究进展   总被引:4,自引:0,他引:4  
陈大保 《合成化学》1995,3(2):114-120
报道了中国科学院山西煤炭化学研究所“七五”期间在煤间接液化研究方面的进展,包括煤基合成气合成发动机燃料及合成气制低碳燃料醇技术的研究开发 ̄[1]。其中煤基合成气合成发动机燃料已完成80~100t/a中间试验,燃料油收率达100g/m ̄3(CO+H_2),汽油辛烷值(马达法)达80,尾气热值达1254kJ/m ̄3。合成气制低碳燃料醇技术研究开发已完成升级模式,在燃料醇组成中,甲醇占71~77%,异丁醇12~15%,时空产率为0.21~0.25Lalc/Lcat·h.参考文献6篇。  相似文献   

7.
采用共沉淀法制备CuZnAl类水滑石,将其担载于活化碳纤维(ACFs)表面,通过焙烧还原合成功能化复合催化剂(CuZnAl/ACFs)。借助XRD、FT-IR及N2吸附-脱附等方法对该复合物进行表征,并将其应用于合成气制备低碳醇的反应中,进行活性评价。结果表明,复合催化剂中活性组分在碳纤维表面均匀分散,碳纤维表面催化剂的颗粒尺寸减小,比表面积增大。ACFs的导电性加速醇合成过程中的电子传递,促进反应进行,因而CO转化率的提高(最高可达47%)。同时,ACFs提高催化剂表面ZnO的分散度,从而促进Cu与ZnO形成金属氧化物界面。这有利于低碳醇的生成,因而使C2以上醇的选择性高达39%。  相似文献   

8.
利用超声辅助的反相共沉淀法制备了合成气选择转化制低碳醇用CuCo基催化剂。研究稀土La助剂对CuCo基复合氧化物催化剂结构的影响和催化性能的促进作用,借助X射线衍射(XRD)、N2吸附等温线(BET)和程序升温脱附(CO-TPD)等测试技术对催化剂进行表征,并以CO加氢合成低碳醇为模型反应对其催化性能进行评价。结果表明,La助剂的添加使催化剂晶粒细化,显著加大了比表面积,促进了合成醇活性位的形成,提高了催化剂表面较强吸附CO物种的浓度,从而明显提高催化剂的活性与C2醇选择性,有效调节了低碳混合醇中甲醇的含量。  相似文献   

9.
活性炭负载钴基催化剂上合成气制混合醇   总被引:2,自引:0,他引:2  
在两种分别来自椰壳炭和杏核炭的活性炭AC1和AC2上,采用真空浸渍法制备了Co基催化剂15%Co/AC1和15Co%/AC2,并考察了其在CO氢化反应中的催化性能.结果表明,AC1和AC2的孔结构基本相同,但表面含氧官能团的数量和种类不同.含氧官能团影响了催化剂Co物种的形态,从而使催化剂在反应中表现出不同的性能.助剂K和zr的添加改变了15%Co/AC1催化剂的活性和选择性.在3.0 Mpa,495 K,H2/CO(体积比)=2和GHSV=500 h-1反应条件下,15%Co/AC1和15%Co/AC2上C1~C18醇的选择性分别为20.6%和9.6%.在其它条件不变,GHSV=1500 h.反应条件下,15%Co-0.01%K-2%Zr/AC1催化剂上CO转化率和醇选择性分别为28.0%和34.3%,液相产物中醇占60.9%,其中C6~C18高碳醇占液相产物的20.6%.  相似文献   

10.
合成低碳醇超细Mo-Co-K催化剂的TPD研究   总被引:1,自引:3,他引:1  
近年来 ,Mo基催化剂由于其独特的耐硫性而在各种合成低碳醇催化剂体系中倍受青睐。许多研究表明 ,以Co作为Mo基催化剂的第二组分可明显改善其催化合成低碳醇的反应性能[1~ 4] 。一般认为 ,K是这类催化剂通用的促进剂[1,3 ,5,6] 。我们曾经报道[7] ,还原态超细Mo Co K催化剂具有优良的合成低碳醇性能。同时 ,催化剂的Co Mo比对其合成低碳醇性能具有显著的影响。为了解这种影响的原因 ,本文运用TPD技术对此类催化剂进行了研究。催化剂经还原后 ,在催化剂表面即形成了不同的吸附中心[8] 。了解这些不同的吸附中心 ,对于研…  相似文献   

11.
CO加氢合成低碳混合醇催化体系研究新进展   总被引:13,自引:0,他引:13  
CO加氢合成低碳混合醇是C1化学研究的重要内容之一,近年来低碳混合醇在燃料和化工领域的应用价值逐步凸现,相关研究也受到越来越普遍的关注.本文就CO加氢合成低碳混合醇的催化剂体系、反应机理、合成工艺及应用等方面的最新进展进行了综述.  相似文献   

12.
射频等离子体对合成低碳醇用CuCoAl催化剂的改性作用   总被引:3,自引:0,他引:3  
采用共浸渍法制备了CuCo/γ-Al2O3催化剂,应用射频等离子体技术对催化剂进行改性处理。以CO加氢合成低碳醇为模型反应对催化剂进行活性评价,通过X射线物相分析(XRD)、氢氧滴定(HOT)、CO程序升温脱附(CO-TPD)和程序升温还原(TPR)等技术对催化剂进行表征,研究了射频等离子体技术强化处理对催化剂结构、吸附性能和还原性能的影响。结果表明,等离子体技术改性处理提高了催化剂活性组分的分散度,细化了铜物种的晶粒尺寸,增加反应活性位并调变了活性位对吸附物种的吸附强度,改进了催化剂的还原性能,等离子体改性处理的催化剂比未处理的样品CO加氢反应活性和低碳醇的时空产率显著提高。  相似文献   

13.
研究了复合催化剂床对合成低碳醇反应行为的影响。结果表明,采用复合床可以提高反应产物中低碳醇的选择性。第一段催化床层的反应产物的分布和第二段催化床层的反应条件直接影响最终的反应结果。第一段催化剂床层中CO的转化率或甲醇的选择性过高都不利于提高反应产物中低碳醇的选择性。  相似文献   

14.
采用浸渍法(IM)和浸渍燃烧法(IMSC)制备了凹凸棒石(ATP)及凹凸棒石-多孔硅胶微球混合物(ATPS)负载CuFe-Co基改性费托催化剂,通过N_2吸附-脱附、X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)、H_2-程序升温还原(H_2-TPR)和CO_2-程序升温脱附(CO_2-TPD)等手段对催化剂进行了表征,并将它们应用于CO加氢制备低碳醇反应。结果表明,IMSC较IM制备催化剂更有利于CuO的负载、分散和还原,促进H_2和CO与Cu活性位的接触,但两者的最佳低碳醇合成温度均为280℃。通过对ATP和ATPS负载Cu-Fe-Co基催化剂(CFCK/ATP、CFCK/ATPS)与Cu/ZnO/Al_2O_3(CZA)甲醇催化剂的组合体系的优化,获得较理想的低碳醇合成催化剂组合体系CZA║CFCK/ATPS-IMSC。利用它们之间的"产物转化耦合效应",实现CO转化率为46.3%,低碳醇选择性为39.6%,C_(2+)醇含量为22.7%。  相似文献   

15.
采用了三种不同的合成醇催化剂分别作为第一段催化床层,以ZnO/Cr2O3催化剂作为第二段催化床层,研究了复合催化剂床对合成低碳醇反应行为的影响。结果表明,采用复合床层技术可以提高反应产物中低碳醇的选择性,但是烃类的转化率增加,液收减小。同时发现,第一段催化床层的反应产物分布与第二段催化床层的反应条件直接影响最终的反应结果。第一段催化剂床层中CO的转化率或甲醇的选择性过高都不利于提高反应产物中低碳醇的选择性  相似文献   

16.
Co在超细Mo-Co-K催化剂合成低碳醇中的作用   总被引:3,自引:2,他引:3  
采用BET、XPS和TPD表征手段对超细Mo-Co-K催化剂的织构、表面结构和吸附行为进行了研究,结合催化剂的合成低碳醇性能,论证了Co在超细Mo-Co-K催化剂合成低碳醇中的作用。Co的加入提高了催化剂合成低碳醇的活性和选择性,同时也提高了催化剂的比表面并促进了微孔的形成,催化剂的催化性能与其织构之间呈现出很好的顺变关系。Co对催化剂中可能作为合成低碳醇活性中心的低价Mo物种的电子结合能值影响较小。Co的加入降低了H2和CO在催化剂表面的强吸附中心的吸附强度,从而有利于合成低碳醇反应的发生。研究结果表明,Co仅仅是作为结构助剂,通过调变催化剂的织构和催化剂表面的H2及CO的强吸附中心而影响其合成低碳醇性能的。  相似文献   

17.
溶胶-凝胶法制备还原态K-Co-Mo催化剂的合成醇性能   总被引:2,自引:1,他引:2  
应用溶胶-凝胶法制备了还原态K-Co-Mo催化剂, 比较了不同的组分和不同的反应条件对合成醇性能的影响。实验结果表明,适量钾和钴助剂的添加能显著提高催化剂合成醇的性能,尤其是提高了C2+醇的选择性。此外,反应温度、压力以及空速对合成醇影响明显,升高温度可以提高催化反应中低碳醇的收率,但选择性下降;增加压力和空速可以提高低碳醇的收率和选择性,对合成低碳醇有利。在230 ℃,6.0 MPa,14 400 h-1条件下,催化剂合成低碳醇的收率为375.4 g/kg·h,选择性为70.2%,C1OH/C2+OH为0.48。  相似文献   

18.
制备系列K改性的β-Mo2C催化剂并对其CO加氢合成低碳混合醇性能进行了考察。结果表明,K改性使β-Mo2C催化剂的CO加氢选择性发生显著变化。β-Mo2C催化剂CO加氢的产物主要为C1~C4烷烃,经K改性后β-Mo2C催化剂上产物主要为C1~C5低碳醇,其中高级醇(C2+OH)选择性可达到33.78%。通过对碱金属质量分数的考察发现,当K/Mo(原子比)为0.2时,总醇选择性达到最大值,低碳醇的时空收率达到0.12 g/(mL·h-1)。β-Mo2C催化剂上醇烃产物均符合线性Anderson-Schultz-Flory(A-S-F)分布曲线,而K改性β-Mo2C催化剂上醇产物为独特的甲醇负偏离A-S-F分布。可见,K助剂的加入有效促进了低碳醇的形成,尤其是促进了C1OH到C2OH的链增长步骤。  相似文献   

19.
采用共浸渍法制备了不同Ce含量的Ce-Cu-Co/CNTs催化剂,考察了其在合成气制低碳醇反应中的催化性能,借助X射线衍射(XRD)、程序升温还原(H2-TPR)、N2吸脱附实验(BET)、透射电镜(TEM)和CO程序升温脱附(CO-TPD)对这些催化剂进行了表征.结果表明,当Ce的质量分数为3%时,低碳醇的时空收率和选择性达到最高,分别为696.4 mg?g-1?h-1和59.7%,其中乙醇占总醇的46.8%,适量Ce的添加能提高Cu物种在催化剂上的分散度和催化剂的还原性能,能显著地增加催化剂吸附CO的能力,促进合成醇活性位的形成,进而明显提高催化剂的活性和总醇的选择性.研究表明,将具有高活性和高碳链增长能力的CuCo基催化剂与碳纳米管的限域效应结合,可实现缩窄产物分布、大幅度提高乙醇选择性的目的.  相似文献   

20.
刘运林  周剑 《化学学报》2012,70(13):1451-1456
首次研究了二氟烯醇硅醚1与β,γ-不饱和酮酸酯2的反应.发现不论使用叔胺或叔胺-氢键给体双功能催化剂,均专一地发生Mukaiyama-aldol反应生成相应的叔醇3.利用手性氢化奎宁衍生的双功能脲催化剂11高对映选择性地实现了这一反应,为合成α-二氟烷基取代的手性叔醇提供了一种新方法.不同芳基取代的二氟烯醇硅醚以及γ位不同芳基取代的酮酸酯化合物均反应良好.在所考察的15个例子中,反应产率中等到良好(44%~81%),对映选择性中等到优秀(72%~96%).反应产物可方便转化为二氟烷基取代的手性二醇或三醇化合物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号