首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Experimental studies on gaseous inorganic phosphate ions are practically nonexistent, yet they can prove helpful for a better understanding of the mechanisms of phosphate ester enzymatic processes. The present contribution extends our previous investigations on the gas-phase ion chemistry of diphosphate species to the [M(1)M(2)HP(2)O(7)](-) ions where M(1) and M(2) are the same or different and correspond to the Li, Na, K, Cs, and Rb cations. The diphosphate ions are formed by electrospray ionization of 10(-4) M solutions of Na(5)P(3)O(10) in CH(3)CN/H(2)O (1/1) and MOH bases or M salts as a source of M(+) cations. The joint application of mass spectrometric techniques and quantum-mechanical calculations makes it possible to characterize the gaseous [M(1)M(2)HP(2)O(7)](-) ions as a mixed ionic population formed by two isomeric species: linear diphosphate anion coordinated to two M(+) cations (group I) and [PO(3)M(1)M(2)HPO(4)](-) clusters (group II). The relative gas-phase stabilities and activation barriers for the isomerization I-->II, which depend on the nature of the M(+) cations, highlight the electronic susceptibility of P-O-P bond breaking in the active site of enzymes. The previously unexplored gas-phase reactivity of [M(1)M(2)HP(2)O(7)](-) ions towards alcohols of different acidity was investigated by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). The reaction proceeds by addition of the alcohol molecule followed by elimination of a water molecule.  相似文献   

2.
The evaporation of water from hydrated alkaline earth metal ions, produced by electrospray ionization, was studied in a Fourier transform mass spectrometer. Zero-pressure-limit dissociation rate constants for loss of a single water molecule from the hydrated divalent metal ions, M(2+)(H(2)O)(n) (M = Mg, Ca, and Sr for n = 5-7, and M = Ba for n = 4-7), are measured as a function of temperature using blackbody infrared radiative dissociation. From these values, zero-pressure-limit Arrhenius parameters are obtained. By modeling the dissociation kinetics using a master equation formalism, threshold dissociation energies (E(o)) are determined. These reactions should have a negligible reverse activation barrier; therefore, E(o) values should be approximately equal to the binding energy or hydration enthalpy at 0 K. For the hepta- and hexahydrated ions at low temperature, binding energies follow the trend expected on the basis of ionic radii: Mg > Ca > Sr > Ba. For the hexahydrated ions at high temperature, binding energies follow the order Ca > Mg > Sr > Ba. The same order is observed for the pentahydrated ions. Collisional dissociation experiments on the tetrahydrated species result in relative dissociation rates that directly correlate with the size of the metals. These results indicate the presence of two isomers for hexahydrated magnesium ions: a low-temperature isomer in which the six water molecules are located in the first solvation shell, and a high-temperature isomer with the most likely structure corresponding to four water molecules in the inner shell and two water molecules in the second shell. These results also indicate that the pentahydrated magnesium ions have a structure with four water molecules in the first solvation shell and one in the outer shell. The dissociation kinetics for the hexa- and pentahydrated clusters of Ca(2+), Sr(2+), and Ba(2+) are consistent with structures in which all the water molecules are located in the first solvation shell.  相似文献   

3.
Interaction of the lacunary [alpha-XW9O33](9-) (X = As(III), Sb(III)) with Cu(2+) and Zn(2+) ions in neutral, aqueous medium leads to the formation of dimeric polyoxoanions, [(alpha-XW9O33)2M3(H2O)3](12-) (M = Cu(2+), Zn(2+); X = As(III), Sb(III)), in high yield. The selenium and tellurium analogues of the copper-containing heteropolyanions are also reported: [(alpha-XW9O33)2Cu3(H2O)3](10-) (X = Se(IV), Te(IV)). The polyanions consist of two [alpha-XW9O33] units joined by three equivalent Cu(2+) (X = As, Sb, Se, Te) or Zn(2+) (X = As, Sb) ions. All copper and zinc ions have one terminal water molecule resulting in square-pyramidal coordination geometry. Therefore, the title anions have idealized D3h symmetry. The space between the three transition metal ions is occupied by three sodium ions (M = Cu(2+), Zn(2+); X = As(III), Sb(III)) or potassium ions (M = Cu(2+); X = Se(IV), Te(IV)) leading to a central belt of six metal atoms alternating in position. Reaction of [alpha-AsW9O33](9-) with Zn(2+), Co(2+), and Mn(2+) ions in acidic medium (pH = 4-5) results in the same structural type but with a lower degree of transition-metal substitution, [(alpha-AsW9O33)2WO(H2O)M2(H2O)2](10-) (M = Zn(2+), Co(2+), Mn(2+)). All nine compounds are characterized by single-crystal X-ray diffraction, IR spectroscopy, and elemental analysis. The solution properties of [(alpha-XW9O33)2Zn3(H2O)3](12-) (X = As(III), Sb(III)) were also studied by 183W-NMR spectroscopy.  相似文献   

4.
We employ second-order M?ller-Plesset perturbation theory level in combination with recently developed pseudopotential-based correlation consistent basis sets to obtain accurate relativistic-consistent electron densities for small coinage metal clusters. Using calculated electron densities, we employ Bader's quantum theory of atoms in molecules (QTAIM) to gain insights into the nature of metal-metal bonding in the clusters M(2), M(4), M(4)(2-), and M(4)Na(2) (M = Cu, Ag, Au). For the simplest case of the metal dimer, M(2), we correlate the strength of the metal-metal bond with the value of the electron density at the bond critical point, the total energy density at the bond critical point, the sharing (delocalization) index, and the values of the two principle negative curvatures. We then consider changes to the metal-metal bonding and charge density distribution upon the addition of two metal atoms to form the metal tetramer, M(4), and then followed by the addition of an electron pair to form M(4)(2-) and finally followed by the addition of two alkali metal (sodium) ions to form M(4)Na(2). Using topological properties of the electron density, we present evidence for the existence of σ-aromaticity in Au(4)(2-). We also report the existence of two non-nuclear attractors in the molecular graph of Cu(4)(2-) and large negative charge accumulation in the nonbonded Cu basins of this cluster.  相似文献   

5.
Synthesis and Crystal Structure of Alkali Metal Diamido Dioxosilicates M2SiO2(NH2)2 with M ? K, Rb and Cs SiO2 – α-quartz – reacts with alkali metal amides MNH2 (M ? K, Rb, and Cs) in molar ratios from 1:2 to 1:10 at 450°C ≤ T ≤ 600°C and P(NH3) = 6 kbar in autoclaves to diamidodioxosilicates M[SiO2(NH2)2]. Crystals of the colourless compounds which hydrolyze rapidly were investigated by x-ray methods. Following data characterize the structure determination on the isotypic compounds: The structures of the diamidodioxosilicates are closely related to the β? K2SO4 type. They contain isolated [SiO2(NH2)2]2? ions. K+ ions and hydrogen bridge bonds N? H…?O (with 2.68 Å ≤ d(N…?O) ≤ 2.78 Å for the K compound) connect the tetrahedral anions.  相似文献   

6.
Liu W  Wang CF  Li YZ  Zuo JL  You XZ 《Inorganic chemistry》2006,45(25):10058-10065
Using the tricyano precursor, (Bu4N)[(Tp)Fe(CN)3] (Tp = Tris(pyrazolyl) hydroborate) (1), four new tetranuclear clusters, [(Tp)Fe(CN)3Cu(Tp)]2.2H2O (2), [(Tp)Fe(CN)3Cu(bpca)]2.4H2O (3) (bpca = bis(2-pyridylcarbonyl)amidate anion), [(Tp)Fe(CN)3Ni(tren)]2(ClO4)2.2H2O (4) (tren = tris(2-amino)ethylamine), and [(Tp)Fe(CN)3Ni(bipy)2]2[(Tp)Fe(CN)3]2.6H2O (5) (bipy = 2,2'-bipyridine), have been synthesized and structurally characterized. The four clusters possess similar square structures, where FeIII and MII (M = CuII or NiII) ions alternate at the rectangle corners. There exist intermolecular - stacking interactions through pyrazolyl groups of Tp- ligands in complexes 2 and 4, which lead to 1D chain structures. Complex 5 shows a 3D network structure through the coexistence of - stacking effects and hydrogen-bonding interactions. Magnetic studies show intramolecular ferromagnetic interactions in all four clusters. The exchange parameters are +11.91 and +1.38 cm(-1) for clusters 2 and 3, respectively, while uniaxial molecular anisotropy can be detected in complex 3 due to the distorted core in its molecular structure. Complex 4 has a ground state of S = 3 and shows SMM behavior with an effective energy barrier of U = 18.9 cm(-1). Unusual spin-glass-like dynamic relaxations are observed for complex 5.  相似文献   

7.
Infrared and Raman spectra of the isostructural cubic halate hexahydrates M(BrO3)2.6H2O (M = Mg, Co, Ni, Zn) and Ni(ClO3)2.6H2O (space group, Pa3; Z = 4) are presented. They are discussed with respect to the strength of the O-H...OXO2 hydrogen bonds (hydrogen bond acceptor capability, synergetic effect) and the order of the BrO stretching modes. In the case of undistorted bromate ions, e.g. at C3 lattice sites, the order of the symmetric (v1) and asymmetric (v3) XO stretching modes is v1 < v3 as for ClO3- but in contrast to IO3- with v1 > v3. The relative order of v1 and v3 of halate ions is mainly governed by the specific masses of the halogen atoms and the angles of the XO3- ions. The latter decrease in the sequence ClO3- (107degrees) > BrO3-> IO3- (< 100 degrees). The Raman scattering intensities of the asymmetric XO stretching modes v3 of the title compounds are unusually low (< 5% those of v1).  相似文献   

8.
Ethylenediamine (en) solutions of K4Pb9 react with toluene solutions of ML4 (M = Pt, Pd, L = PPh3; M = Ni, L2= COD) and 2,2,2-crypt to give M@Pb12(2-) cluster anions (M = Pt (1), Pd (2), Ni (3)) as the [K(2,2,2-crypt)]+ salts in low (Ni) to good (Pt) yields. The ions have near perfect Ih point symmetry and have been characterized by X-ray diffraction, 207Pb NMR and LDI-TOF mass spectrometry studies. For M = Ni, the primary product formed is the D4d Ni@Pb10(2-) cluster that has also been structurally characterized. The M@Pb10(2-) clusters (M = Pd, Pt) and the new Zintl ions closo-Pb10(2-) and closo-Pb12(2-) were formed in the gas phase but have not been detected in solution or the solid state. The structural trends of these series of clusters have been investigated through DFT calculations. The Ni@Pb10(2-) cluster is dynamic on the 207Pb NMR time scale at -45 degrees C and 104.7 MHz. The M@Pb12(2-) ions show unusually deshielded 207Pb NMR chemical shifts that presumably arise from sigma-aromatic effects associated with their high symmetries. In the solid state, the salts form superlattices of cations and anions (e.g. the AlB2 lattice of [K(2,2,2-crypt)](2)[Pt@Pb12]) and are prototypes for "assembled cluster materials".  相似文献   

9.
By reaction of KC(2)H and K(2)Zn(CN)(4) in liquid ammonia, the diammoniate K(2)Zn(C(2)H)(4).2NH(3) was obtained. K(2)Cd(C(2)H)(4).2NH(3) was synthesized by reacting KC(2)H, Cd(NH(2))(2), and acetylene in liquid ammonia. The crystal structures of the air and temperature sensitive compounds were determined by X-ray single crystal diffraction at low temperatures (T = 170 K). Both compounds crystallize in the monoclinic space group I2/a (No. 15) with Z = 4. K(2)Zn(C(2)H)(4).2NH(3): a = 7.289(1) A, b = 12.765(2) A, c = 14.066(2) A, beta = 98.11(2) degrees. K(2)Cd(C(2)H)(4).2NH(3): a = 7.444(1) A, b = 12.619(3) A, c = 14.304(2) A, beta = 98.94(1) degrees. Characteristic structural motifs are tetrahedral [M(C(2)H)(4)](2-) fragments (M = Zn, Cd) and zigzag chains of edge sharing distorted (C(2)H)(6) octahedra centered by potassium ions. These zigzag chains are connected by a second type of crystallographically distinct potassium ions that also bind to two ammonia molecules.  相似文献   

10.
The rate constants and product ion branching ratios have been measured in a selected ion flow tube (SIFT) at 298 K for a variety of positive and negative ions reacting with 2-chloroethyl ethyl sulfide (2-CEES), a surrogate for mustard gas (HD). This series of experiments is designed to elucidate ion-molecule reactions that have large rate constants and produce unique product ions to guide the development of chemical ionization mass spectrometry (CIMS) detection methods for the chemical weapon agent using the surrogate instead. The negative ions typically used in CIMS instruments are essentially unreactive with 2-CEES, that is, SF 6 (-), SF 4 (-), CF 3O (-), and CO 3 (-). A few negative ions such as NO 2 (-) and NO 3 (-) undergo three-body association to give a unique product ion, but the bimolecular rate constants are small in the SIFT. Positive ions typically react at the collisional limit, primarily by charge and proton transfer, some of which is dissociative. For ions with high proton binding energies, association with 2-CEES has also been observed. Many of these reactions produced ions with the 2-CEES intact, including the parent cation, the protonated cation, and clusters. G3(MP2) calculations of the thermochemical properties for 2-CEES and mustard have been performed, along with calculations of the structures for the observed product cations. Reacting a series of protonated neutral molecules with 2-CEES brackets the proton affinity (PA) to between 812 ((CH 3) 2CO) and 854 (NH 3) kJ mol (-1). G3(MP2) calculations give a PA for 2-CEES of 823 kJ mol (-1) and a PA for mustard of 796 kJ mol (-1), indicating that the present results for 2-CEES should be directly transferable to mustard to design a CIMS detection scheme.  相似文献   

11.
A new family of cyanide-based spin-crossover polymers with the general formula {Fe(5-Br-pmd)z[M(CN)x]y} [M=AgI (1), AuI (2), NiII (3), PdII (4), PtII (5); 5-Br-pmd=5-bromopyrimidine; z=1 or 2, x=2 or 4, and y=2 or 1] have been synthesized and characterized using single-crystal X-ray diffraction (XRD), X-ray powder diffraction (XRPD), magnetic susceptibility measurements, and differential scanning calorimetry (DSC). At 293 K, compound 1 presents the monoclinic space group C2/c, whereas at 120 K, it changes to the monoclinic space group P21/c. At 293 K, the crystal structure of 1 displays an uninodal three-dimensional network whose nodes, constituted of FeII, lie at the inversion center of an elongated octahedron. The equatorial bond lengths are defined by the N atoms of four [AgI(CN)2]- groups belonging to two crystallographically nonequivalent AgI atoms, Ag(1) and Ag(2). They are shorter than those of the axial positions occupied by the N atoms of the 5-Br-pmd ligands. The Fe-N average bond length of 2.1657(7) A is consistent with a high-spin (HS) state for the FeII ions. At 120 K, the crystal structure changes refer mainly to the FeII environment. There are two crystallographically independent FeII ions at this temperature, Fe(1) and Fe(2), which adopt the HS and low-spin (LS) states, respectively. The average Fe-N bond length for Fe(1) [2.174(5) A] and Fe(2) [1.955(5) A] agrees well with the reported magnetic data at this temperature. The spin transition of the FeII ions labeled as Fe(1) is found to be centered at Tc downward arrow=149 K and Tc upward arrow=167 K and accompanied by a drastic change of color from orange (HS) to red (LS). Magnetic susceptibility measurements under applied hydrostatic pressure performed on 1 have shown a linear displacement of the transition to higher temperatures while the hysteresis width remains unaltered in the interval of pressures of 105 Pa to 0.34 GPa. A further increase of the pressure induces the spin transition in the Fe(2) ions, which is completely accomplished at 1.12 GPa (T1/2=162 K). Compounds 1 and 2 are isostructural, but 2 does not exhibit spin-transition properties; the FeII centers remain in the HS state in the temperature range investigated, 5-300 K. Compounds 3-5 are not similar or isostructural with 1. A two-dimensional structure for 3-5 has been proposed on the basis of analytical data and the XRPD patterns. Compounds 3-5 undergo first-order spin transition where the critical temperatures for the cooling (Tc downward arrow) and warming (Tc upward arrow) modes are 170 and 180 K (3), 204 and 214 K (4), and 197 and 223 K (5), respectively. It is worth mentioning the color change from yellow to orange observed in 3-5 upon spin transition. The thermodynamic parameters associated with the spin transition estimated from DSC measurements are DeltaH=6 kJ mol(-1) (1), 11 kJ mol(-1) (3), 16 kJ mol(-1) (4), and 16 kJ mol(-1) (5) and DeltaS=38 J K(-1) mol(-1) (1), 62 J K(-1) mol(-1) (3), 76 J K-1 mol(-1) (4), and 81 J K(-1) mol(-1) (5).  相似文献   

12.
This paper reports on a novel application of a ligand field model for the detection of the local molecular structure of a coordination complex. By diagonalizing the complete energy matrices of the electron-electron repulsion, the ligand field and the spin-orbit coupling for the d5 configuration ion in a trigonal ligand field, the local distortion structure of the (MnO6)10- coordination complex for Mn2+ ions doped into CaCO3, have been investigated. Both the second-order zero-field splitting parameter b(0)2 and the fourth-order zero-field splitting parameter b(0)4 are taken simultaneously in the structural investigation. From the electron paramagnetic resonance (EPR) calculations, the local structure distortion, DeltaR=-0.169 A to -0.156 A, Deltatheta=0.996 degrees to 1.035 degrees for Mn2+ ions in calcite single crystal, DeltaR=-0.185 A to -0.171 A, Deltatheta=3.139 degrees to 3.184 degrees for Mn2+ ions in travertines, and DeltaR=-0.149 A to -0.102 A, Deltatheta=0.791 degrees to 3.927 degrees for Mn2+ ions in shells are determined, respectively. These results elucidate a microscopic origin of various ligand field parameters which are usually used empirically for the interpretation of EPR and optical absorption experiments. It is found that the theoretical results of the EPR and optical absorption spectra for Mn2+ ions in CaCO3 are in good agreement with the experimental findings. Moreover, to understand the detailed physical and chemical properties of the doped CaCO3, the theoretical values of the fourth-order zero-field splitting parameters b(0)4 for Mn2+ ions in travertines and shells are reported first.  相似文献   

13.
14.
Oshio H  Kikuchi T  Ito T 《Inorganic chemistry》1996,35(17):4938-4941
The reaction of [Cu(acpa)](+) with [MO(4)](2)(-) (Hacpa = N-(1-acetyl-2-propyridene)(2-pyridylmethyl)amine and M = Cr and Mo) in water-methanol or water-acetonitrile solution affords dinuclear copper(II) complexes with metalate bridges, [{Cu(acpa)}(2)(&mgr;-CrO(4))].4CH(3)OH.4H(2)O (1) and [{Cu(acpa)}(2)(&mgr;-MoO(4))].4H(2)O (2), respectively. The crystal structures and the magnetic properties have been studied. Complexes 1 and 2 are isomorphous and the structures are made up of discrete dimers in which two copper(II) ions are bridged by the [MO(4)](2)(-) anion. The coordination geometry about the copper(II) ions is square planar with a N(2)O chelate group from acpa and an oxygen atom from [MO(4)](2)(-). Magnetic susceptibility measurements for 1 revealed that a ferromagnetic interaction between copper(II) ions is propagated through the [CrO(4)](2)(-) bridge and the coupling constant (2J) was evaluated to be 14.6(1) cm(-)(1) (H = -2JS(1).S(2)). In 2, two copper(II) ions bridged by [MoO(4)](2)(-) anion are antiferromagnetically coupled with the 2J value of -5.1(4) cm(-)(1). The ferromagnetic interaction in 1 is explained by means of the orbital topology of frontier orbitals. Crystal data: 1, monoclinic, space group P2(1)/m, a = 8.349(2) ?, b = 17.616(3) ?, c = 10.473 ?, beta = 107.40(2) degrees, Z= 2; 2, monoclinic, space group P2(1)/m, a = 8.486(2) ?, b = 18.043(3) ?, c = 9.753(2) ?, beta = 95.82(2) degrees, Z = 2.  相似文献   

15.
Ethylenediamine (en) solutions of [eta(4)-P(7)M(CO)(3)](3)(-) ions [M = W (1a), Mo (1b)] react under one atmosphere of CO to form microcrystalline yellow powders of [eta(2)-P(7)M(CO)(4)](3)(-) complexes [M = W (4a), Mo (4b)]. Compounds 4 are unstable, losing CO to re-form 1, but are highly nucleophilic and basic. They are protonated with methanol in en solvent giving [eta(2)-HP(7)M(CO)(4)](2)(-) ions (5) and are alkylated with R(4)N(+) salts in en solutions to give [eta(2)-RP(7)M(CO)(4)](2)(-) complexes (6) in good yields (R = alkyl). Compounds 5 and 6 can also be prepared by carbonylations of the [eta(4)-HP(7)M(CO)(3)](2)(-) (3) and [eta(4)-RP(7)M(CO)(3)](2)(-) (2) precursors, respectively. The carbonylations of 1-3 to form 4-6 require a change from eta(4)- to eta(2)-coordination of the P(7) cages in order to maintain 18-electron configurations at the metal centers. Comparative protonation/deprotonation studies show 4 to be more basic than 1. The compounds were characterized by IR and (1)H, (13)C, and (31)P NMR spectroscopic studies and microanalysis where appropriate. The [K(2,2,2-crypt)](+) salts of 5 were characterized by single crystal X-ray diffraction. For 5, the M-P bonds are very long (2.71(1) ?, average). The P(7)(3)(-) cages of 5 are not displaced by dppe. The P(7) cages in 4-6 have nortricyclane-like structures in contrast to the norbornadiene-type geometries observed for 1-3. (31)P NMR spectroscopic studies for 5-6 show C(1) symmetry in solution (seven inequivalent phosphorus nuclei), consistent with the structural studies for 5, and C(s)() symmetry for 4 (five phosphorus nuclei in a 2:2:1:1:1 ratio). Crystallographic data for [K(2,2,2-crypt)](2)[eta(2)-HP(7)W(CO)(4)].en: monoclinic, space group C2/c, a = 23.067(20) ?, b = 12.6931(13) ?, c = 21.433(2) ?, beta = 90.758(7) degrees, V = 6274.9(10) ?(3), Z = 4, R(F) = 0.0573, R(w)(F(2)) = 0.1409. For [K(2,2,2-crypt)](2)[eta(2)-HP(7)Mo(CO)(4)].en: monoclinic, space group C2/c, a = 22.848(2) ?, b = 12.528(2) ?, c = 21.460(2) ?, beta = 91.412(12) degrees, V = 6140.9(12) ?(3), Z = 4, R(F) = 0.0681, R(w)(F(2)) = 0.1399.  相似文献   

16.
The dissociative photoionization of CH2Br2 in a region approximately 10-24 eV was investigated with photoionization mass spectroscopy using a synchrotron radiation source. An adiabatic ionization energy of 10.25 eV determined for CH2Br2 agrees satisfactorily with predictions of 10.26 and 10.25 eV with G2 and G3 methods, respectively. Observed major fragment ions CH2Br+, CHBr+, and CBr+ show appearance energies at 11.22, 12.59, and 15.42 eV, respectively; minor fragment ions CHBr2+, Br+, and CH2+ appear at 12.64, 15.31, and 16.80 eV, respectively. Energies for formation of observed fragment ions and their neutral counterparts upon ionization of CH2Br2 are computed with G2 and G3 methods. Dissociative photoionization channels associated with six observed fragment ions are proposed based on comparison of determined appearance energies and predicted energies. An upper limit of DeltaH0f,298(CHBr+) < or = 300.7 +/- 1.5 kcal mol(-1) is derived experimentally; the adiabatic ionization energy of CHBr is thus derived to be < or = 9.17 +/- 0.23 eV. Literature values for DeltaH0f,298(CBr+) = 362.5 kcal mol(-1) and ionization energy of 10.43 eV for CBr are revised to be less than 332 kcal mol(-1) and 9.11 eV, respectively. Also based on a new experimental ionization energy, DeltaH0f,298(CH2Br2+) is revised to be 236.4 +/- 1.5 kcal mol(-1).  相似文献   

17.
The yields of hydrogen peroxide have been measured in the radiolysis of aqueous solutions of acrylamide, bromide, nitrate, and air in the pH range of 1-13. Hydrogen peroxide is the main stable oxidizing species formed in the radiolysis of water, and its long-term yield is found to be very sensitive to the system used in the measurements. Experiments with γ-irradiation combined with model calculations show that the primary yields of hydrogen peroxide are nearly independent of pH in the range of 2-12. Slightly higher primary yields are suggested at very low pH in particular when O(2) is present, while the yields seem to decrease at very high pH. Irradiations were performed with 5 MeV H ions, 5 MeV He ions, and 10 MeV C ions to evaluate the intratrack and homogeneous kinetic contributions to H(2)O(2) formation with different ions. Many of the trends in hydrogen peroxide yields with pH observed with γ-irradiations are observed with irradiation by the heavy ions. The lower yields of radicals in the homogeneous phase with the heavier ions tend to minimize the effects of radicals on the hydrogen peroxide yields at long times.  相似文献   

18.
Wang H  Liu Z  Liu C  Zhang D  Lü Z  Geng H  Shuai Z  Zhu D 《Inorganic chemistry》2004,43(13):4091-4098
Three new complexes of the formula M(2)L(2) derived from 2-(4-quinolyl)nitronyl nitroxide (4-QNNN) and M(hfac)(2) [M = Mn(II), Co(II), and Cu(II)], (4-QNNN)(2).[Mn(hfac)(2)](2) (1), (4-QNNN)(2).[Co(hfac)(2)](2).2H(2)O (2), and (4-QNNN)(2).Cu(hfac)(2).Cu'(hfac)(2) (3), were synthesized and characterized structurally as well as magnetically. Complexes 1 and 2 are four-spin complexes with quadrangle geometry, in which both the nitrogen atoms of quinoline rings and oxygen atoms of nitronyl nitroxides are involved in the formation of coordination bonds. For complex 3, however, the nitrogen atoms of quinoline rings are coordinated with Cu(II) ion to afford a three-spin complex, which is further linked to another molecule of Cu(hfac)(2) (referred to as Cu'(hfac)(2)) to form a 1D alternating chain. The magnetic behaviors of the three complexes were investigated. For complex 1, as the nitronyl nitroxides and Mn(II) ions are strongly antiferromagnetically coupled, consequently its temperature dependence of magnetic susceptibility was fitted to the model of spin-dimer with S = 2, yielding the intradimer magnetic exchange constant of J = -0.82 cm(-1). For complex 2, the temperature dependence of the magnetic susceptibility in the T > 50 K region was simulated with the model of two-spin unit with S(1) = 3/2 and S(2) = 1/2, leading to J = -321.9 cm(-1) for the magnetic interaction due to Co(II).O coordination bonding, D = -16.3 cm(-1) (the zero-field splitting parameter), g = 2.26, and zJ = -3.8 cm(-1) for the magnetic interactions between Co(II) ions and nitronyl nitroxides through quinoline rings and those between nitronyl nitroxides due to the short O.O short contacts. The temperature dependence of magnetic susceptibility of 3 was approximately fitted to a model described previously affording J(1) = -6.52 cm(-1) and J(2) = 3.64 cm(-1) for the magnetic interaction between nitronyl nitroxides and Cu(II) ions through the quinoline unit via spin polarization mechanism and the weak O.Cu coordination bonding, respectively.  相似文献   

19.
The arenium ions of protonation and the two-electron oxidation dications derived from benzo[a]pyrene (BaP) 1 and three of its nonalternant isomers namely azuleno[5,6,7-cd]phenalene 2 (a strong carcinogen reported to be as potent as BaP) azuleno[1,2,3-cd]phenalene 3 (a strong mutagen/weak carcinogen), and azuleno[4,5,6-cd]phenalene 4 (a weak mutagen) were studied by DFT at the B3LYP/6-31G(d) level. The most favored sites for electrophilic attack were identified on the basis of relative protonation energies in the arenium ions. Computed NMR chemical shifts (GIAO NMR), the NPA-derived charges (and changes in charges), as well as NICS (and DeltaNICS) were employed to derive charge delocalization maps and to gauge relative aromaticity/antiaromaticity in the resulting carbocations and oxidation dications. Quantitative correlations between the experimental (superacid) (13)C data and GIAO chemical shifts, and between computed changes in charges and GIAO Deltadelta (13)C values were explored for benzo[a]pyrenium ion (1cH(+)) and its singlet oxidation dication (1(2+)) as representative cases. For the studied PAHs (1-4), formation of singlet dications were computed to be strongly favored except in 4 for which the triplet lies 5 kcal/mol lower than singlet. Relative carbocation stability data and the derived charge delocalization patterns are assessed in light of the available chemical and toxicological data on these compounds. The present study is the first of its kind to examine the carbocations and oxidation dications derived from biologically active nonalternant analogues of BaP for which no stable ion data are available. It also validates and extends the experimental data for BaP carbocation and oxidation dication and provides a means to gauge the success of GIAO NMR in predicting NMR data for PAH-arenium ions.  相似文献   

20.
The lifetimes of long-lived C2Cl4(-) ions formed by Rydberg electron transfer in K(np)/C2Cl4 collisions are investigated using a Penning ion trap. Measurements at high n, n > or = 30, show that low-energy electron attachment to C2Cl4 leads to the production of C2Cl4(-) ions with a broad range of lifetimes that extends up to at least 1 ms. This is attributed to capture by molecules in different initial vibrational states. At low n, internal-to-translational energy transfer in postattachment interactions between the product K+ and C2Cl4(-) ions becomes important and leads to a substantial increase in ion lifetimes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号