首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the electrochemical properties of CVD grown graphene towards the detection of various biologically prevalent analytes including l-ascorbic acid (AA), dopamine hydrochloride (DA), β-nicotinamide adenine dinucleotide (NADH), uric acid (UA) and epinephrine (EP). We find that the observed electrochemical response of the CVD-graphene towards these select analytes does not originate from the graphene, however, from various other contributions including the presence of 'graphitic islands' on the surface of the CVD-graphene which dominate its electrochemistry. In the systems studied within, it appears at best, CVD-graphene acts akin to that of an edge plane pyrolytic graphite (EPPG) electrode constructed from highly ordered pyrolytic graphite. However, in other cases, the response of the CVD-graphene is worse than that of an EPPG electrode, which is likely due to the low O/C ratio.  相似文献   

2.
Brownson DA  Foster CW  Banks CE 《The Analyst》2012,137(8):1815-1823
We explore the use of graphene modified electrodes towards the electroanalytical sensing of various analytes, namely dopamine hydrochloride, uric acid, acetaminophen and p-benzoquinone via cyclic voltammetry. In line with literature methodologies and to investigate the full-implications of employing graphene in this electrochemical context, we modify electrode substrates that exhibit either fast or slow electron transfer kinetics (edge- or basal- plane pyrolytic graphite electrodes respectively) with well characterised commercially available graphene that has not been chemically treated, is free from surfactants and as a result of its fabrication has an extremely low oxygen content, allowing the true electroanalytical applicability of graphene to be properly de-convoluted and determined. In comparison to the unmodified underlying electrode substrates (constructed from graphite), we find that graphene exhibits a reduced analytical performance in terms of sensitivity, linearity and observed detection limits towards each of the various analytes studied within. Owing to graphene's structural composition, low proportion of edge plane sites and consequent slow heterogeneous electron transfer rates, there appears to be no advantages, for the analytes studied here, of employing graphene in this electroanalytical context.  相似文献   

3.
《Electroanalysis》2017,29(3):756-764
Direct electro‐oxidation of famotidine at different graphitic carbon‐based electrode materials was evaluated. These materials included conventional electrodes of edge‐plane pyrolytic graphite, basal‐plane pyrolytic graphite, carbon paste, and glassy carbon as well as nano‐structured carbon‐based materials such as pyrolytic carbon film, carbon nanotube, and nano‐graphene. Raman spectroscopy and scanning electron microscopy were employed to analyze their structural and morphological features. It was found that the pyrolytic carbon film electrode, after a simple and fast anodic activation, shows superior electroanalytical performance. The method was successfully applied for the electroanalytical determination of famotidine in tablet dosage forms and urine samples.  相似文献   

4.
Banks CE  Compton RG 《The Analyst》2005,130(9):1232-1239
The electrocatalytic properties of multi-walled carbon nanotube modified electrodes toward the oxidation of NADH are critically evaluated. Carbon nanotube modified electrodes are examined and compared with boron-doped diamond and glassy carbon electrodes, and most importantly, edge plane and basal pyrolytic graphite electrodes. It is found that CNT modified electrodes are no more reactive than edge plane pyrolytic graphite electrodes with the comparison with edge plane and basal plane pyrolytic graphite electrodes allowing the electroactive sites for the electrochemical oxidation of NADH to be unambiguously determined as due to edge plane sites. Using these highly reactive edge plane sites, edge plane pyrolytic graphite electrodes are examined with cyclic voltammetry and amperometry for the electroanalytical determination of NADH. It is demonstrated that a detection limit of 5 microM is possible with cyclic voltammetry or 0.3 microM using amperometry suggesting that edge plane pyrolytic graphite electrodes can conveniently replace carbon nanotube modified glassy carbon electrodes for biosensing applications with the relative advantages of reactivity, cost and simplicity of preparation. We advocate the routine use of edge plane and basal plane pyrolytic graphite electrodes in studies utilising carbon nanotubes particularly if 'electrocatalytic' properties are claimed for the latter.  相似文献   

5.
Different graphitic carbon-based electrode materials were evaluated for direct electro-oxidation of clindamycin and electroanalytical parameters such as sensitivity, residual background current, and signal-tobackground current ratio were compared to select the best one for the clindamycin electroanalysis. Such electrode materials include glassy carbon, carbon paste, pyrolytic graphite (edge-plane and basal-plane), carbon nanotube, reduced graphene oxide, and carbon black. The edge-plane pyrolytic graphite electrode after a simple and fast electrochemical pretreatment showed superior performance compared with the other carbon electrodes. Raman and Fourier transform infrared spectroscopy were employed to analyze the surface microstructure and chemical bonding of the carbon materials and scanning electron microscopy was used to study their surface morphologic features. The applicability of the electrochemically activated edge-plane pyrolytic graphite electrode for the determination of clindamycin in pharmaceutical formulations and human urine samples was evaluated.  相似文献   

6.
A highly sensitive and simple electroanalytical methodology is presented using an in-situ bismuth film modified edge plane pyrolytic graphite electrode (BiF-EPPGE) which is exemplified with the simultaneous determination of cadmium(II) and lead(II). Square-wave anodic stripping voltammetry is utilised with the effects of several experimental variables studied. Simultaneous additions of cadmium(II) and lead(II) were investigated where two linear ranges between 0.1-100 and 0.1-300 microg/L and also detection limits of 0.062 and 0.084 microg/L were obtained, respectively. The method was then successfully applied to the simultaneous determination of cadmium(II) and lead(II) in spiked river water, where recoveries of 100.5 and 98% were obtained, respectively. This electroanalytical protocol using edge plane pyrolytic graphite electrodes is one of the simplest methodologies to date using non-mercury based electrodes and is simpler and cheaper than alternatives such as carbon nanotube electrode arrays, suggesting the use of edge plane pyrolytic graphite electrode for routine sensing.  相似文献   

7.
The oxidation of 2-aminoquinoline was studied at a stationary pyrolytic graphite electrode in methanol-phosphate buffer at 25°C using various electroanalytical techniques. In the entire pH range (2.2–10.4), 2-aminoquinoline is oxidized and exhibits a well defined oxidation peak following a 2e?, 2H+ process to give, 2,2′-azoquinoline as the major product. The linear relationship between peak current at a pyrolytic graphite electrode and concentration indicated that 2-aminoquinoline can be determined in the concentration range 0.1–1.0 mM. On the basis of cyclic voltammetry, spectral studies and controlled-potential coulometry, a mechanism of the electrode process is proposed.  相似文献   

8.
A sensitive electroanalytical method is presented for the determination of 4‐hexylresorcinol using adsorptive stripping voltammetry (AdsSV) at a multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode (MWCNT‐BPPGE). This method is also extended to the use of a MWCNT modified screen‐printed electrode (MWCNT‐SPE), thereby demonstrating that this approach can easily be incorporated into a facile and inexpensive electrochemical sensor.  相似文献   

9.
The influence of mechanical contortion upon the electrochemical performance of screen‐printed graphite paper‐based electroanalytical sensing platforms is evaluated and contrasted with traditionally employed polymeric based screen‐printed graphite sensors. Such a situation of implementation can be envisaged for the potential sensing of analytes on the skin where such sensors are based, for example in clothing where mechanical contortion, viz, bending will occur, and as such, its effect upon electrochemical sensors is of both fundamental and applied importance. The effect of mechanical contortion or stress upon electrochemical behaviour and performance is of screen printed sensors is explored. Comparisons are made between both paper‐ and polymeric‐ based sensing platforms that are evaluated towards the sensing of the well characterised electrochemical probes potassium ferrocyanide(II), hexaammine‐ruthenium(III) chloride and nicotinamide adenine dinucleotide (NADH). It is determined that the paper‐based sensors offer greater resilience in terms of electrochemical performance after mechanical stress. We gain insights into the role played by both the effect of the time of mechanical contortion and additionally the potentially detrimental effects of repeated contortion are explored. These unique paper‐based sensors hold promise for widespread applications where flexible and ultra‐low cost sensors are required such as applications into medical devices were ultra‐low cost sensors are a pre‐requisite, but also for utilisation within applications which require the implementation of ultra‐flexible electroanalytical sensing platforms such as in the case of wearable sensors, whilst maintaining useful electrochemical performances.  相似文献   

10.
The differential pulse voltammetric oxidation of polyinosinic acid (poly(I)), inosine-5'-monophosphate, inosine and hypoxanthine at a pyrolytic graphite electrode has been studied. Poly(I) gives a single, pH-dependent voltammetric oxidation peak which is well separated from the single peak observed for very low concentrations of hypoxanthine. An electroanalytical method for the detection and determination of trace amounts of hypoxanthine in poly(I) samples is described.  相似文献   

11.
Goyal RN  Chatterjee S  Rana AR 《Talanta》2010,83(1):149-155
Electrochemical sensor employing edge-plane pyrolytic graphite electrode (EPPGE) for the sensitive detection of hydrocortisone (HC) is delineated for the first time. The electrochemical properties are investigated exercising the cyclic voltammetry and square-wave voltammetry (SWV). When equating with the bare basal-plane pyrolytic graphite electrode (BPPGE), the EPPGE gave better response towards the detection of HC both in terms of sensitivity and detection limit. The voltammetric results indicated that EPPGE remarkably enhances the reduction of HC which leads to considerable amelioration of peak current with shift of peak potential to less negative values. The difference in the surface morphology of two electrodes has been studied. Also, the EPPGE delivered an analytical performance for HC with a sensitivity of 45 nA nM−1 and limit of detection of 88 nM in the concentration range 100-2000 nM. The method has been utilized for the determination of HC in pharmaceuticals and real samples. The electroanalytical method using EPPGE is the most sensitive method for determination of HC with lowest limit of detection to date. The major metabolites present in blood plasma did not intervene with the present investigation as they did not exhibit reduction peak in the experimental range used. A comparison of results with high performance liquid chromatography (HPLC) signalizes a good agreement.  相似文献   

12.
Matousek JP  Powell HK 《Talanta》1997,44(7):1183-1193
In electrothermal atomic absorption spectroscopy (ETAAS) effective stabilization of analytes can be achieved by an initial in situ electrodeposition of 0.2 mug of Pd. This amount of Pd is on average a factor of 50 lower than that typically used for conventional chemical modification. The surface features of this modifier have been characterized by scanning electron microscopy (SEM) measurements on sectioned pyrolytic graphite furnaces and contrasted with those for modifier produced from thermally reduced Pd salts. Electrodeposition produces a uniform array of Pd domains stretching approximately 2 mm from the centrally positioned Pt/Ir anode (which doubles as the autosampler sample delivery tube). In contrast, thermally reduced Pd salts produce a modifier which concentrates in domains near the drying edge of the modifier solution. Anodic stripping voltammetry (ASV) established that Pb electrodeposited onto Pd-modified pyrolytic graphite affixes to the Pd rather than the graphite. ASV measurements using a basal plane pyrolytic graphite working electrode also established that (i) the stripping potentials for monolayer and multilayer Pb are shifted anodically by 0.16 and 0.18 V, respectively by binding to Pd rather than graphite and (ii) deposition of Pb from dilute acidic medium (1% HNO(3)) leads only to monolayer Pb, in contrast to deposition from acetate buffer (pH 4.0-4.4) which produces predominantly multilayer Pb.  相似文献   

13.
《Electroanalysis》2006,18(5):449-455
The direct electrochemical oxidation of ammonia in propylene carbonate is reported for the first time. The voltammetric responses at glassy carbon, boron‐doped diamond, edge and basal plane pyrolytic graphite electrodes are explored and compared with the outcome indicating that the optimum electrode substrate for analytical purposes in this solvent is glassy carbon. Proof‐of‐concept is shown for the amperometric detection of ammonia using basal plane pyrolytic graphite electrodes abrasively modified with glassy carbon spheres. Given the significantly lower vapor pressure of propylene carbonate in comparison to water the implications for extending the life‐time of practical sensors are evident. Propylene carbonate shows a wide potential window with glassy carbon electrodes permitting this approach to be used for a potential diversity of gaseous analytes.  相似文献   

14.
Different kinds of graphite surfaces (electrographite, pyrolytic graphite, zirconium and tungsten carbide-coated) have been tested for optimization of analytical conditions for the determination of chromium using electrothermal atomic absorption spectrometry. The effect of mineral acids on the peak absorbance signal of chromium has been investigated. Considering pyrolysis temperature and sensitivity, atomization from pyrolytic graphite coated surface showed the best performance.  相似文献   

15.
Ni Y  Kokot S 《Analytica chimica acta》2008,626(2):130-146
This review explores the question whether chemometrics methods enhance the performance of electroanalytical methods. Electroanalysis has long benefited from the well-established techniques such as potentiometric titrations, polarography and voltammetry, and the more novel ones such as electronic tongues and noses, which have enlarged the scope of applications. The electroanalytical methods have been improved with the application of chemometrics for simultaneous quantitative prediction of analytes or qualitative resolution of complex overlapping responses. Typical methods include partial least squares (PLS), artificial neural networks (ANNs), and multiple curve resolution methods (MCR-ALS, N-PLS and PARAFAC). This review aims to provide the practising analyst with a broad guide to electroanalytical applications supported by chemometrics. In this context, after a general consideration of the use of a number of electroanalytical techniques with the aid of chemometrics methods, several overviews follow with each one focusing on an important field of application such as food, pharmaceuticals, pesticides and the environment. The growth of chemometrics in conjunction with electronic tongue and nose sensors is highlighted, and this is followed by an overview of the use of chemometrics for the resolution of complicated profiles for qualitative identification of analytes, especially with the use of the MCR-ALS methodology. Finally, the performance of electroanalytical methods is compared with that of some spectrophotometric procedures on the basis of figures-of-merit. This showed that electroanalytical methods can perform as well as the spectrophotometric ones. PLS-1 appears to be the method of practical choice if the %relative prediction error of ∼±10% is acceptable.  相似文献   

16.
The modification phenomena of noble metals (Pd, Ir, Rh) electrodeposited onto the inner surface of pyrolytic graphite (PG) coated furnaces were investigated mainly by electron microprobe analysis with energy dispersive X-ray emission detection. The conditions of electrodeposition were optimized in order to achieve the best analytical performance of atomic absorption measurements. Investigations concerning the distribution of noble metals on the tube surface and in-depth were performed at different stages of the tube history. It was found that the noble metals used for the modification do not form a compact layer on the surface but penetrate into the pyrolytic graphite structure already at the deposition step. When two metals were deposited together, both penetrated into the graphite structure. The degree of penetration of the pyrolytic graphite at high temperature differs for various metals. It was also demonstrated that electrodeposited noble metals remain in sub-surface domains of the graphite for hundreds of atomization cycles, which means that they can be used as permanent modifiers.  相似文献   

17.
This work reports on the electroanalytical performance of a glassy carbon electrode (GCE) modified with antimony and bismuth (Sb/Bi-GCE) in detecting heavy metal ions using lead and cadmium as model analytes. The electroanalytical performance of the Sb/Bi-GCE surface was compared to the bismuth modified glassy carbon electrode (Bi-GCE) as well as the antimony modified glassy carbon electrode (Sb-GCE). The Sb/Bi-GCE exhibited excellent figures of merit compared to Bi-GCE and Sb-GCE surfaces. For example, the limit of detection for lead was 0.01 ppb using Sb/Bi-GCE and 0.1 and 1 ppb on Bi-GCE and Sb-GCE, respectively.  相似文献   

18.
《Electroanalysis》2005,17(18):1627-1634
The behavior of chloride, bromide and iodide at edge plane pyrolytic graphite electrodes has been explored in aqueous acid solutions. The voltammetric response in each case has been compared with that of basal plane pyrolytic graphite, glassy carbon and boron‐doped diamond. The electrochemical oxidation of chloride is found to only occur on boron‐doped diamond while the electrochemical reversibility for the oxidation of bromide on edge plane pyrolytic graphite is similar to that seen at glassy carbon whilst being superior to basal plane pyrolytic graphite and boron‐doped diamond. In the case of iodide oxidation, edge plane and basal plane pyrolytic graphite and glassy carbon display similar electrode kinetics but are all superior to boron‐doped diamond. The analytical possibilities were examined using the edge plane pyrolytic graphite electrode for both iodide and bromine where is was found that, based on cyclic voltammetry, detection limits in the order of 10?6 M are possible.  相似文献   

19.
Zhano H  Rusling JF 《Talanta》1993,40(5):741-747
Voltammetric reductions of several organohalide pollutants in films of didodecyldimethylammonium bromide (DDAB) and clay-DDAB cast onto pyrolytic graphite electrodes were examined. Direct reduction data show that the amount of accumulation in these liquid crystal films was larger for relatively nonpolar analytes such as trans-1,2-dibromocyclohexane than for chlorinated acids. The vicinal dibromides are probably taken up by hydrophobic regions of the films. Chlorinated acids were accumulated and reduced in DDAB films, but their direct reduction was partly blocked by the clay-DDAB films. Catalytic reductions using films containing metal phthalocyanines had good efficiencies for all substrates studied and shifted reduction potentials positive by 200-550 mV.  相似文献   

20.
For the first time we report on the electrochemical characteristics of nanometer sized polyhedral graphite onions dispersed amongst arc‐MWCNTs. These are formed during the electric arc discharge method of producing ultrapure MWCNTs (arc‐MWCNTs). The carbon onions are randomly dispersed amongst the arc‐MWCNTs which are produced with very little amorphous carbon deposits or other unwanted impurities and are formed as closed‐ended tubes. By comparison with commercially available open‐ended hollow‐tube multiwalled carbon nanotubes made using the chemical vapor deposition method (cvd‐MWCNTs), a glassy carbon electrode (GCE), an edge‐plane pyrolytic graphite electrode (eppg) and basal plane pyrolytic graphite (bppg) electrode, we can speculate that it is the edge‐plane‐like defect sites that are the electroactive sites responsible for the apparent ‘electrocatalysis’ seen with a wide range of analytes including: ferrocyanide, ruthenium hexaamine(III), nicotinamide adenosine dinucleotide (NADH), epinephrine, norepinephrine, cysteine, and glutathione. The arc‐MWCNTs themselves are produced as closed‐ended tubes with very few, if any, edge‐plane‐like defect sites evident in their HRTEM characterization. Therefore we speculate that it is the carbon onions dispersed amongst the arc‐MWCNTs which have incomplete graphite shells or a rolled‐up ‘Swiss‐roll’ structures that posses the edge‐plane‐like defect sites and are responsible for the observed voltammetric responses. Carbon onions are no more or no less ‘electrocatalytic’ than open‐ended MWCNTs which in turn are no more electrocatalytic than an eppg electrode. As the carbon onions are ubiquitous in MWCNTs formed using the arc‐discharge method the authors advise that caution should be taken before assigning any electrocatalytic behavior to the MWCNTs themselves as any observed electrocatalysis likely arises from the carbon onion impurities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号