首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Warm inflation model with bulk viscous pressure in the context of “intermediate inflation” where the cosmological scale factor expands as $a(t)=a_0\exp (At^f)$ , is studied. The characteristics of this model in slow-roll approximation and in high dissipative regime are presented in two cases: 1—Dissipative parameter $\Gamma $ as a function of scalar field $\phi $ and bulk viscous coefficient $\zeta $ as a function of energy density $\rho $ . 2— $\Gamma $ and $\zeta $ are constant parameters. Scalar, tensor perturbations and spectral indices for this scenario are obtained. The cosmological parameters appearing in the present model are constrained by recent observational data (WMAP7).  相似文献   

2.
We investigate the matching, across cylindrical surfaces, of static cylindrically symmetric conformally flat spacetimes with a cosmological constant $\Lambda $ , satisfying regularity conditions at the axis, to an exterior Linet–Tian spacetime. We prove that for $\Lambda \le 0$ such matching is impossible. On the other hand, we show through simple examples that the matching is possible for $\Lambda >0$ . We suggest a physical argument that might explain these results.  相似文献   

3.
In this paper, an interacting dark energy model in a non-flat universe is studied, with taking interaction form $C=\alpha H\rho _{de}$ C = α H ρ d e . And in this study a property for the mysterious dark energy is aforehand assumed, i.e. its equation of state $w_{\Lambda }=-1$ w Λ = - 1 . After several derivations, a power-law form of dark energy density is obtained $\rho _{\Lambda } \propto a^{-\alpha }$ ρ Λ ∝ a - α , here $a$ a is the cosmic scale factor, $\alpha $ α is a constant parameter introducing to describe the interaction strength and the evolution of dark energy. By comparing with the current cosmic observations, the combined constraints on the parameter $\alpha $ α is investigated in a non-flat universe. For the used data they include: the Union2 data of type Ia supernova, the Hubble data at different redshifts including several new published datapoints, the baryon acoustic oscillation data, the cosmic microwave background data, and the observational data from cluster X-ray gas mass fraction. The constraint results on model parameters are $\Omega _{K}=0.0024\,(\pm 0.0053)^{+0.0052+0.0105}_{-0.0052-0.0103}, \alpha =-0.030\,(\pm 0.042)^{+0.041+0.079}_{-0.042-0.085}$ Ω K = 0.0024 ( ± 0.0053 ) - 0.0052 - 0.0103 + 0.0052 + 0.0105 , α = - 0.030 ( ± 0.042 ) - 0.042 - 0.085 + 0.041 + 0.079 and $\Omega _{0m}=0.282\,(\pm 0.011)^{+0.011+0.023}_{-0.011-0.022}$ Ω 0 m = 0.282 ( ± 0.011 ) - 0.011 - 0.022 + 0.011 + 0.023 . According to the constraint results, it is shown that small constraint values of $\alpha $ α indicate that the strength of interaction is weak, and at $1\sigma $ 1 σ confidence level the non-interacting cosmological constant model can not be excluded.  相似文献   

4.
5.
In this article, we study the critical dissipative surface quasi-geostrophic equation (SQG) in ${\mathbb{R}^2}$ R 2 . Motivated by the study of the homogeneous statistical solutions of this equation, we show that for any large initial data θ 0 liying in the space ${\Lambda^{s} (\dot{H}^{s}_{uloc}(\mathbb{R}^2)) \cap L^\infty(\mathbb{R}^2)}$ Λ s ( H ˙ u l o c s ( R 2 ) ) ∩ L ∞ ( R 2 ) the critical (SQG) has a global weak solution in time for 1/2 <  s <  1. Our proof is based on an energy inequality verified by the equation ${(SQG)_{R,\epsilon}}$ ( S Q G ) R , ? which is nothing but the (SQG) equation with truncated and regularized initial data. By classical compactness arguments, we show that we are able to pass to the limit ( ${R \rightarrow \infty}$ R → ∞ , ${\epsilon \rightarrow 0}$ ? → 0 ) in ${(SQG)_{R,\epsilon}}$ ( S Q G ) R , ? and that the limit solution has the desired regularity.  相似文献   

6.
We consider the block band matrices, i.e. the Hermitian matrices $H_N$ , $N=|\Lambda |W$ with elements $H_{jk,\alpha \beta }$ , where $j,k \in \Lambda =[1,m]^d\cap \mathbb {Z}^d$ (they parameterize the lattice sites) and $\alpha , \beta = 1,\ldots , W$ (they parameterize the orbitals on each site). The entries $H_{jk,\alpha \beta }$ are random Gaussian variables with mean zero such that $\langle H_{j_1k_1,\alpha _1\beta _1}H_{j_2k_2,\alpha _2\beta _2}\rangle =\delta _{j_1k_2}\delta _{j_2k_1} \delta _{\alpha _1\beta _2}\delta _{\beta _1\alpha _2} J_{j_1k_1},$ where $J=1/W+\alpha \Delta /W$ , $\alpha < 1/4d$ . This matrices are the special case of Wegner’s $W$ -orbital models. Assuming that the number of sites $|\Lambda |$ is finite, we prove universality of the local eigenvalue statistics of $H_N$ for the energies $|\lambda _0|< \sqrt{2}$ .  相似文献   

7.
We consider Hermitian and symmetric random band matrices H = (h xy ) in ${d\,\geqslant\,1}$ d ? 1 dimensions. The matrix entries h xy , indexed by ${x,y \in (\mathbb{Z}/L\mathbb{Z})^d}$ x , y ∈ ( Z / L Z ) d , are independent, centred random variables with variances ${s_{xy} = \mathbb{E} |h_{xy}|^2}$ s x y = E | h x y | 2 . We assume that s xy is negligible if |x ? y| exceeds the band width W. In one dimension we prove that the eigenvectors of H are delocalized if ${W\gg L^{4/5}}$ W ? L 4 / 5 . We also show that the magnitude of the matrix entries ${|{G_{xy}}|^2}$ | G x y | 2 of the resolvent ${G=G(z)=(H-z)^{-1}}$ G = G ( z ) = ( H - z ) - 1 is self-averaging and we compute ${\mathbb{E} |{G_{xy}}|^2}$ E | G x y | 2 . We show that, as ${L\to\infty}$ L → ∞ and ${W\gg L^{4/5}}$ W ? L 4 / 5 , the behaviour of ${\mathbb{E} |G_{xy}|^2}$ E | G x y | 2 is governed by a diffusion operator whose diffusion constant we compute. Similar results are obtained in higher dimensions.  相似文献   

8.
The features of the new interaction model ESC08c in ${\Lambda N}$ , ${\Sigma N}$ and ${\Xi N}$ channels are demonstrated single hyperon potentials ${U_Y(Y=\Lambda, \Sigma, \Xi)}$ in nuclear matter on the basis of the G-matrix theory. (K ?, K +) productions of ${\Xi}$ hypernuclei are studied with ${\Xi}$ -nucleus folding potentials.  相似文献   

9.
We implement an infinite iteration scheme of Poincaré-Dulac normal form reductions to establish an energy estimate on the one-dimensional cubic nonlinear Schrödinger equation (NLS) in ${C_tL^2(\mathbb{T})}$ C t L 2 ( T ) , without using any auxiliary function space. This allows us to construct weak solutions of NLS in ${C_tL^2(\mathbb{T})}$ C t L 2 ( T ) with initial data in ${L^2(\mathbb{T})}$ L 2 ( T ) as limits of classical solutions. As a consequence of our construction, we also prove unconditional well-posedness of NLS in ${H^s(\mathbb{T})}$ H s ( T ) for ${s \geq \frac{1}{6}}$ s ≥ 1 6 .  相似文献   

10.
The total mass, the Witten type gauge conditions and the spectral properties of the Sen–Witten and the 3-surface twistor operators in closed universes are investigated. It has been proven that a recently suggested expression $\mathtt{M}$ M for the total mass density of closed universes is vanishing if and only if the spacetime is flat with toroidal spatial topology; it coincides with the first eigenvalue of the Sen–Witten operator; and it is vanishing if and only if Witten’s gauge condition admits a non-trivial solution. Here we generalize slightly the result above on the zero-mass configurations: $\mathtt{M}=0$ M = 0 if and only if the spacetime is holonomically trivial with toroidal spatial topology. Also, we show that the multiplicity of the eigenvalues of the (square of the) Sen–Witten operator is even, and a potentially viable gauge condition is suggested. The monotonicity properties of $\mathtt{M}$ M through the examples of closed Bianchi I and IX cosmological spacetimes are also discussed. A potential spectral characterization of these cosmological spacetimes, in terms of the spectrum of the Riemannian Dirac operator and the Sen–Witten and the 3-surface twistor operators, is also indicated.  相似文献   

11.
We consider Dirichlet-to-Neumann maps associated with (not necessarily self-adjoint) Schrödinger operators describing nonlocal interactions in ${L^2(\Omega; d^n x)}$ , where ${\Omega \subset \mathbb{R}^n}$ , ${n\in\mathbb{N}}$ , ${n\geq 2}$ , are open sets with a compact, nonempty boundary ${\partial\Omega}$ satisfying certain regularity conditions. As an application we describe a reduction of a certain ratio of Fredholm perturbation determinants associated with operators in ${L^2(\Omega; d^{n} x)}$ to Fredholm perturbation determinants associated with operators in ${L^2(\partial\Omega; d^{n-1} \sigma)}$ , ${n\in\mathbb{N}}$ , ${n\geq 2}$ . This leads to an extension of a variant of a celebrated formula due to Jost and Pais, which reduces the Fredholm perturbation determinant associated with a Schrödinger operator on the half-line ${(0,\infty)}$ , in the case of local interactions, to a simple Wronski determinant of appropriate distributional solutions of the underlying Schrödinger equation.  相似文献   

12.
We prove that self-avoiding walk on ${\mathbb{Z}^d}$ is sub-ballistic in any dimension d ≥ 2. That is, writing ${\| u \|}$ for the Euclidean norm of ${u \in \mathbb{Z}^d}$ , and ${\mathsf{P_{SAW}}_n}$ for the uniform measure on self-avoiding walks ${\gamma : \{0, \ldots, n\} \to \mathbb{Z}^d}$ for which γ 0 = 0, we show that, for each v > 0, there exists ${\varepsilon > 0}$ such that, for each ${n \in \mathbb{N}, \mathsf{P_{SAW}}_n \big( {\rm max}\big\{\| \gamma_k \| : 0 \leq k \leq n\big\} \geq vn \big) \leq e^{-\varepsilon n}}$ .  相似文献   

13.
In this article, we present a brief review of the discoveries of kinds of antimatter particles, including positron ( $ \bar e $ ), antiproton ( $ \bar p $ ), antideuteron ( $ \bar d $ ) and antihelium-3 ( $ ^3 \overline {He} $ ). Special emphasis is put on the discovery of the antihypertriton( $ \frac{3} {\Lambda }\overline H $ ) and antihelium-4 nucleus ( $ ^4 \overline {He} $ , or $ \bar \alpha $ ) which were reported by the RHIC-STAR experiment very recently. In addition, brief discussions about the effort to search for antinuclei in cosmic rays and study of the longtime confinement of the simplest antimatter atom, antihydrogen are also given. Moreover, the production mechanism of anti-light nuclei is introduced.  相似文献   

14.
We consider a version of directed bond percolation on the triangular lattice such that vertical edges are directed upward with probability $y$ , diagonal edges are directed from lower-left to upper-right or lower-right to upper-left with probability $d$ , and horizontal edges are directed rightward with probabilities $x$ and one in alternate rows. Let $\tau (M,N)$ be the probability that there is at least one connected-directed path of occupied edges from $(0,0)$ to $(M,N)$ . For each $x \in [0,1]$ , $y \in [0,1)$ , $d \in [0,1)$ but $(1-y)(1-d) \ne 1$ and aspect ratio $\alpha =M/N$ fixed for the triangular lattice with diagonal edges from lower-left to upper-right, we show that there is an $\alpha _c = (d-y-dy)/[2(d+y-dy)] + [1-(1-d)^2(1-y)^2x]/[2(d+y-dy)^2]$ such that as $N \rightarrow \infty $ , $\tau (M,N)$ is $1$ , $0$ and $1/2$ for $\alpha > \alpha _c$ , $\alpha < \alpha _c$ and $\alpha =\alpha _c$ , respectively. A corresponding result is obtained for the triangular lattice with diagonal edges from lower-right to upper-left. We also investigate the rate of convergence of $\tau (M,N)$ and the asymptotic behavior of $\tau (M_N^-,N)$ and $\tau (M_N^+ ,N)$ where $M_N^-/N\uparrow \alpha _c$ and $M_N^+/N\downarrow \alpha _c$ as $N\uparrow \infty $ .  相似文献   

15.
Consider an FPU chain composed of $N\gg 1$ particles, and endow the phase space with the Gibbs measure corresponding to a small temperature $\beta ^{-1}$ . Given a fixed $K$ , we construct $K$ packets of normal modes whose energies are adiabatic invariants (i.e., are approximately constant for times of order $\beta ^{1-a}$ , $a>0$ ) for initial data in a set of large measure. Furthermore, the time autocorrelation function of the energy of each packet does not decay significantly for times of order $\beta $ . The restrictions on the shape of the packets are very mild. All estimates are uniform in the number $N$ of particles and thus hold in the thermodynamic limit $N\rightarrow \infty $ , $\beta >0$ .  相似文献   

16.
We consider the simple random walk on ${\mathbb{Z}^d}$ Z d , d > 3, evolving in a potential of the form β V, where ${(V(x))_{x \in \mathbb{Z}^d}}$ ( V ( x ) ) x ∈ Z d are i.i.d. random variables taking values in [0, + ∞), and β > 0. When the potential is integrable, the asymptotic behaviours as β tends to 0 of the associated quenched and annealed Lyapunov exponents are known (and coincide). Here, we do not assume such integrability, and prove a sharp lower bound on the annealed Lyapunov exponent for small β. The result can be rephrased in terms of the decay of the averaged Green function of the Anderson Hamiltonian ${-\triangle + \beta V}$ - ? + β V .  相似文献   

17.
We study long-time asymptotics of the solution to the Cauchy problem for the Gerdjikov-Ivanov type derivative nonlinear Schrödinger equation i q t + q xx ? i q 2 q ? x + 1 2 | q | 4 q = 0 $$iq_{t}+q_{xx}-iq^{2}\bar{q}_{x}+\frac{1}{2}|q|^{4}{q}=0 $$ with step-like initial data q ( x , 0 ) = 0 $q(x,0)=0$ for x ≤ 0 $x \leqslant 0$ and q ( x , 0 ) = A e ? 2 iBx $q(x,0)=A\mathrm {e}^{-2iBx}$ for x > 0 $x>0$ , where A > 0 $A>0$ and B ∈ ? $B\in \mathbb R$ are constants. We show that there are three regions in the half-plane { ( x , t ) | ? ∞ < x < ∞ , t > 0 } $\{(x,t) | -\infty <x<\infty , t>0\}$ , on which the asymptotics has qualitatively different forms: a slowly decaying self-similar wave of Zakharov-Manakov type for x > ? 4 tB $x>-4tB$ , a plane wave region: x > ? 4 t B + 2 A 2 B + A 2 4 $x<-4t\left (B+\sqrt {2A^{2}\left (B+\frac {A^{2}}{4}\right )}\right )$ , an elliptic region: ? 4 t B + 2 A 2 B + A 2 4 > x > ? 4 tB $-4t\left (B+\sqrt {2A^{2}\left (B+\frac {A^{2}}{4}\right )}\right )<x<-4tB$ . Our main tools include asymptotic analysis, matrix Riemann-Hilbert problem and Deift-Zhou steepest descent method.  相似文献   

18.
In this article, we study the ${3\over 2}^{+}$ heavy and doubly heavy baryon states $\varXi^{*}_{cc}$ , $\varOmega^{*}_{cc}$ , $\varXi^{*}_{bb}$ , $\varOmega^{*}_{bb}$ , $\varSigma_{c}^{*}$ , $\varXi_{c}^{*}$ , $\varOmega_{c}^{*}$ , $\varSigma_{b}^{*}$ , $\varXi_{b}^{*}$ and $\varOmega_{b}^{*}$ by subtracting the contributions from the corresponding ${3\over 2}^{-}$ heavy and doubly heavy baryon states with the QCD sum rules, and we make reasonable predictions for their masses.  相似文献   

19.
Generic model and thorough investigation are proposed for a novel $1\times 2$ 1 × 2 polymer electro-optic (EO) switch based on one-group $2N+1$ 2 N + 1 vertical-turning serial-coupled microrings. For realizing boxlike flat spectrum as well as low crosstalk and insertion loss, resonance order and coupling gaps are optimized. The MRR switches with $N \ge 1$ N ≥ 1 reveal favorable boxlike spectrum as when compared with the simple device with only one microring ( $N = 0$ N = 0 ). For obtaining $<-30\,\text{ dB }$ < - 30 dB crosstalk under through-state, the dependency of switching voltage on $N$ N is determined as $7.19 \times \text{ exp }(-N/0.72) + 1.72\,(\text{ V })$ 7.19 × exp ( - N / 0.72 ) + 1.72 ( V ) . Under the operation voltages of 0 V (drop state) and the predicted switching voltages (through state), the device performances are analyzed, and $1 \le N \le 10$ 1 ≤ N ≤ 10 is required for dropping the insertion loss (drop state) below 10 dB. The crosstalk of the ten devices ( $N = 1-10$ N = 1 - 10 ) are $< -19.5\,\text{ dB }$ < - 19.5 dB under drop state and $< -28.7\,\text{ dB }$ < - 28.7 dB under through state, and the insertion losses of the devices ( $N = 1-10$ N = 1 - 10 ) are $< 9.715\,\text{ dB }$ < 9.715 dB under drop state and $< 1.573\,\text{ dB }$ < 1.573 dB under through state. The device also has ultra-compact footprint size of only 0.33–1.06 mm, which is only 1/10–1/3 of those of our previously reported polymer EO switches based on directional coupler or Mach–Zehnder interferometer structures. Therefore, the proposed device is capable of highly integration onto optical networks-on-chip.  相似文献   

20.
The Schrödinger  equation for a particle of rest mass $m$ and electrical charge $ne$ interacting with a four-vector potential $A_i$ can be derived as the non-relativistic limit of the Klein–Gordon  equation $\left( \Box '+m^2\right) \varPsi =0$ for the wave function $\varPsi $ , where $\Box '=\eta ^{jk}\partial '_j\partial '_k$ and $\partial '_j=\partial _j -\mathrm {i}n e A_j$ , or equivalently from the one-dimensional  action $S_1=-\int m ds +\int neA_i dx^i$ for the corresponding point particle in the semi-classical approximation $\varPsi \sim \exp {(\mathrm {i}S_1)}$ , both methods yielding the equation $\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2m}\eta ^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + m + n e\phi \right) \varPsi $ in Minkowski  space–time  , where $\alpha ,\beta =1,2,3$ and $\phi =-A_0$ . We show that these two methods generally yield equations  that differ in a curved background  space–time   $g_{ij}$ , although they coincide when $g_{0\alpha }=0$ if $m$ is replaced by the effective mass $\mathcal{M}\equiv \sqrt{m^2-\xi R}$ in both the Klein–Gordon  action $S$ and $S_1$ , allowing for non-minimal coupling to the gravitational  field, where $R$ is the Ricci scalar and $\xi $ is a constant. In this case $\mathrm {i}\partial _0\varPsi \approx \left( \frac{1}{2\mathcal{M}'} g^{\alpha \beta }\partial '_{\alpha }\partial '_{\beta } + \mathcal{M}\phi ^{(\mathrm g)} + n e\phi \right) \varPsi $ , where $\phi ^{(\mathrm g)} =\sqrt{g_{00}}$ and $\mathcal{M}'=\mathcal{M}/\phi ^{(\mathrm g)} $ , the correctness of the gravitational  contribution to the potential having been verified to linear order $m\phi ^{(\mathrm g)} $ in the thermal-neutron beam interferometry experiment due to Colella et al. Setting $n=2$ and regarding $\varPsi $ as the quasi-particle wave function, or order parameter, we obtain the generalization of the fundamental macroscopic Ginzburg-Landau equation of superconductivity to curved space–time. Conservation of probability and electrical current requires both electromagnetic gauge and space–time  coordinate conditions to be imposed, which exemplifies the gravito-electromagnetic analogy, particularly in the stationary case, when div ${{\varvec{A}}}=\hbox {div}{{\varvec{A}}}^{(\mathrm g)}=0$ , where ${{\varvec{A}}}^{\alpha }=-A^{\alpha }$ and ${{\varvec{A}}}^{(\mathrm g)\alpha }=-\phi ^{(\mathrm g)}g^{0\alpha }$ . The quantum-cosmological Schrödinger  (Wheeler–DeWitt) equation is also discussed in the $\mathcal{D}$ -dimensional  mini-superspace idealization, with particular regard to the vacuum potential $\mathcal V$ and the characteristics of the ground state, assuming a gravitational  Lagrangian   $L_\mathcal{D}$ which contains higher-derivative  terms up to order $\mathcal{R}^4$ . For the heterotic superstring theory  , $L_\mathcal{D}$ consists of an infinite series in $\alpha '\mathcal{R}$ , where $\alpha '$ is the Regge slope parameter, and in the perturbative approximation $\alpha '|\mathcal{R}| \ll 1$ , $\mathcal V$ is positive semi-definite for $\mathcal{D} \ge 4$ . The maximally symmetric ground state satisfying the field equations is Minkowski  space for $3\le {\mathcal {D}}\le 7$ and anti-de Sitter  space for $8 \le \mathcal {D} \le 10$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号