首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We study the possibility of phase transitions between Lifshitz black holes and other configurations by using free energies explicitly. A phase transition between Lifshitz soliton and Lifshitz black hole might not occur in three dimensions. We find that a phase transition between Lifshitz and BTZ black holes is unlikely to occur because they have different asymptotes. Similarly, we point out that any phase transition between Lifshitz and black branes is unlikely to occur in four dimensions since they have different asymptotes. This is consistent with the necessary condition for taking a phase transition in a gravitational system, which requires the same asymptote.  相似文献   

2.
彭严  邓方安  刘国华  杨凯凡 《物理学报》2015,64(15):157401-157401
本文研究了含Stückelberg机理的黑洞全息超导模型. 通过选取标量场新的高阶修正形式, 建立了新的Stückelberg黑洞全息超导模型. 通过研究模型参数对标量场凝聚的影响, 发现了当模型参数大于临界值时, 高阶修正可以引起一阶相变. 同时本文还考查了反作用对临界值的影响.  相似文献   

3.
In this study, we investigate the phase transitions of the RN-AdS black hole at its Davies points according to the generalized Ehrenfest classification of phase transition established based on fractional derivatives. Notably, Davies points label the positions at which the heat capacity diverges. According to the usual Ehrenfest classification, second-order phase transitions occur at these points. For the RN-AdS black hole, the Davies points can be classified into two types. The first type corresponds to extreme values of the temperature, and the second type corresponds to the infection point (namely the critical point) of temperature. Employing the generalized Ehrenfest classification, we determine that the orders of phase transition at the two types of Davies points are different, that is, we note an order of 3/2 for the first type and 4/3 for the second type. Thus, this finer-grained classification can discriminate between phase transitions that are expected to lie in the same category, providing new insights leading toward a better understanding of black hole thermodynamics.  相似文献   

4.
In this work we consider black hole solutions to Einstein's theory coupled to a nonlinear power-law electromagnetic field with a fixed exponent value. We study the extended phase space thermodynamics in canonical and grand canonical ensembles, where the varying cosmological constant plays the role of an effective thermodynamic pressure. We examine thermodynamical phase transitions in such black holes and find that both first- and second-order phase transitions can occur in the canonical ensemble while, for the grand canonical ensemble, Hawking–Page and second-order phase transitions are allowed.  相似文献   

5.
We construct finite mass, asymptotically flat black hole solutions in d=5 Einstein-Yang-Mills-Chern-Simons theory. Our results indicate the existence of a second order phase transition between Reissner-Nordstr?m solutions and the non-Abelian black holes which generically are thermodynamically preferred. Some of the non-Abelian configurations are also stable under linear, spherically symmetric perturbations.  相似文献   

6.
Understanding the dynamic process of black hole thermodynamic phase transitions at a triple point is a huge challenge. In this paper, we conduct the first investigation of dynamic phase behavior at a black hole triple point. By numerically solving the Smoluchowski equation near the triple point for a six-dimensional charged Gauss-Bonnet anti-de Sitter black hole, we report that initial small, intermediate, or large black holes can transit to the other two coexistent phases at the triple point, indicating that thermodynamic phase transitions can indeed occur dynamically. More significantly, we observe characteristic weak and strong oscillatory behavior in this dynamic process, which can be understood from an investigation of the rate of first passage from one phase to another. Our results further an understanding of the dynamic process of black hole thermodynamic phase transitions.  相似文献   

7.
In these notes we present a summary of existing ideas about phase transitions of black hole spacetimes in semiclassical gravity and offer some thoughts on three possible scenarios or mechanisms by which these transitions could take place. We begin with a review of the thermodynamics of a black hole system and emphasize that the phase transition is driven by the large entropy of the black hole horizon. Our first theme is illustrated by a quantum atomic black hole system, generalizing to finite-temperature a model originally offered by Bekenstein. In this equilibrium atomic model, the black hole phase transition is realized as the abrupt excitation of a high energy state, suggesting analogies with the study of two-level atoms. Our second theme argues that the black hole system shares similarities with the defect-mediated Kosterlitz–Thouless transition in condensed matter. These similarities suggest that the black hole phase transition may be more fully understood by focusing upon the dynamics of black holes and white holes, the spacetime analogy of vortex and antivortex topological defects. Finally, we compare the black hole phase transition to another transition driven by an (exponentially) increasing density of states, the Hagedorn transition first found in hadron physics in the context of dual models or the old string theory. In modern string theory the Hagedorn transition is linked by the Maldacena conjecture to the Hawking–Page black hole phase transition in Anti-de Sitter (AdS) space, as observed by Witten. Thus, the dynamics of the Hagedorn transition may yield insight into the dynamics of the black hole phase transition. We argue that characteristics of the Hagedorn transition are already contained within the dynamics of classical string systems. Our third theme points to carrying out a full nonperturbative and nonequilibrium analysis of the large N behavior of classical SU(N) gauge theories to understand its Hagadorn transition. By invoking the Maldacena conjecture we can then gain valuable insight into black hole phase transitions in AdS space.  相似文献   

8.
9.
In this paper, we first obtain the higher-dimen-sional dilaton–Lifshitz black hole solutions in the presence of Born–Infeld (BI) electrodynamics. We find that there are two different solutions for the cases of \(z=n+1\) and \(z\ne n+1\) where z is the dynamical critical exponent and n is the number of spatial dimensions. Calculating the conserved and thermodynamical quantities, we show that the first law of thermodynamics is satisfied for both cases. Then we turn to the study of different phase transitions for our Lifshitz black holes. We start with the Hawking–Page phase transition and explore the effects of different parameters of our model on it for both linearly and BI charged cases. After that, we discuss the phase transitions inside the black holes. We present the improved Davies quantities and prove that the phase transition points shown by them are coincident with the Ruppeiner ones. We show that the zero temperature phase transitions are transitions in the radiance properties of black holes by using the Landau–Lifshitz theory of thermodynamic fluctuations. Next, we turn to the study of the Ruppeiner geometry (thermodynamic geometry) for our solutions. We investigate thermal stability, interaction type of possible black hole molecules and phase transitions of our solutions for linearly and BI charged cases separately. For the linearly charged case, we show that there are no phase transitions at finite temperature for the case \( z\ge 2\). For \(z<2\), it is found that the number of finite temperature phase transition points depends on the value of the black hole charge and there are not more than two. When we have two finite temperature phase transition points, there is no thermally stable black hole between these two points and we have discontinuous small/large black hole phase transitions. As expected, for small black holes, we observe finite magnitude for the Ruppeiner invariant, which shows the finite correlation between possible black hole molecules, while for large black holes, the correlation is very small. Finally, we study the Ruppeiner geometry and thermal stability of BI charged Lifshtiz black holes for different values of z. We observe that small black holes are thermally unstable in some situations. Also, the behavior of the correlation between possible black hole molecules for large black holes is the same as for the linearly charged case. In both the linearly and the BI charged cases, for some choices of the parameters, the black hole system behaves like a Van der Waals gas near the transition point.  相似文献   

10.
Recently, the Hawking radiation of a black hole has been studied using the tunnel effect method. The radiation spectrum of a black hole is derived. By discussing the correction to spectrum of the rotating black hole, we obtain the canonical entropy. The derived canonical entropy is equal to the sum of Bekenstein-Havcking entropy and correction term. The correction term near the critical point is different from the one near others. This difference plays an important role in studying the phase transition of the black hole. The black hole thermal capacity diverges at the critical point. However, the canonical entropy is not a complex number at this point. Thus we think that the phase transition created by this critical point is the second order phase transition. The discussed black hole is a five-dimensional Kerr-AdS black hole. We provide a basis for discussing thermodynamic properties of a higher-dimensional rotating black hole.  相似文献   

11.
We investigate the meaning of the entropy carried away by Hawking radiations from a black hole. We propose that the entropy for a black hole measures the uncertainty of the information about the black hole forming matter’s precollapsed configurations, self-collapsed configurations, and inter-collapsed configurations. We find that gravitational wave or gravitational radiation alone cannot carry all information about the processes of black hole coalescence and collapse, while the total information locked in the hole could be carried away completely by Hawking radiation as tunneling.  相似文献   

12.
甘俏姗  陈菊华  王永久 《中国物理 B》2016,25(12):120401-120401
In this paper we investigate the phase transition and geometrothermodynamics of regular electrically charged black hole in nonlinear electrodynamics theory coupled to general relativity. We analyze the types of phase transition of the thermodynamic system by calculating its temperature, heat capacity, and free energy, etc. We find that there are secondorder phase transitions from the heat capacity for a large value of S. In addition, employing the geometrothermodynamics,we obtain a Legendre invariance metric and find the relationship between the thermodynamical phase transition and the singularity of the curvature scalar in the regular black hole with the nonlinear electrodynamics.  相似文献   

13.
We study the charged black hole of hyperbolic horizon with scalar hair (charged Martinez-Troncoso-Zanelli: CMTZ black hole) as a model of analytic hairy black hole for holographic superconductor. For this purpose, we investigate the second order phase transition between CMTZ and hyperbolic Reissner-Nordström-AdS (HRNAdS) black holes. However, this transition unlikely occurs. As an analytic treatment for holographic superconductor, we develop superconductor in the bulk and superfluidity on the boundary using the CMTZ black hole below the critical temperature. The presence of charge destroys the condensates around the zero temperature, which is in accord with the thermodynamic analysis of the CMTZ black hole.  相似文献   

14.
For charged black holes in Ho?ava–Lifshitz gravity, a second order phase transition takes place in extended phase space where the cosmological constant is taken as thermodynamic pressure. We relate the second order nature of phase transition to the fact that the phase transition occurs at a sharp temperature and not over a temperature interval. Once we know the continuity of the first derivatives of the Gibbs free energy, we show that all the Ehrenfest equations are readily satisfied. We study the effect of the perturbation of the cosmological constant as well as the perturbation of the electric charge on thermodynamic stability of Ho?ava–Lifshitz black hole. We also use thermodynamic geometry to study phase transition in extended phase space. We investigate the behavior of scalar curvature of Weinhold, Ruppeiner, and Quevedo metric in extended phase space of charged Ho?ava–Lifshitz black holes. It is checked if these curvatures could reproduce the result of specific heat for the phase transition.  相似文献   

15.
We consider the evolution of primordial black holes formed during the high energy phase of the braneworld scenario. We show that the effect of accretion from the surrounding radiation bath is dominant compared to evaporation for such black holes. This feature lasts till the onset of matter (or black hole) domination of the total energy density which could occur either in the high energy phase or later. We find that the black hole evaporation times could be significantly large even for black holes with small initial mass to survive until several cosmologically interesting eras.  相似文献   

16.
As a charged fermion drops into a BTZ black hole, the laws of thermodynamics and the weak cosmic censorship conjecture are investigated in both the normal and extended phase space, where the cosmological parameter and renormalization length are regarded as extensive quantities. In the normal phase space, the first and second law of thermodynamics, and the weak cosmic censorship are found to be valid. In the extended phase space, although the first law and weak cosmic censorship conjecture remain valid, the second law is dependent on the variation of the renormalization energy d K. Moreover, in the extended phase space, the configurations of extremal and near-extremal black holes are not changed, as they are stable, while in the normal phase space, the extremal and near-extremal black holes evolve into non-extremal black holes.  相似文献   

17.
We investigate the Lifshitz black holes from the Ho?ava–Lifshitz gravity by comparing with the Lifshitz black hole from the 3D new massive gravity. We note that these solutions all have single horizons. These black holes are very similar to each other when studying their thermodynamics. It is shown that a second order phase transition is unlikely possible to occur between z=3,2z=3,2 Lifshitz black holes and z=1z=1 Ho?ava black hole.  相似文献   

18.
We present an exact three-dimensional massive Kiselev AdS black hole solution. This Kiselev black hole is neither perfectly fluid, nor is it the quintessential solution, but the BTZ black hole modified by the anisotropic matter. This black hole possesses an essential singularity at its radial origin and a single horizon whose radius will increase monotonically when the parameter of the anisotropic matter field ω decreases. We calculate all thermodynamic quantities and find that the first law of thermodynamics of this massive Kiselev AdS black hole can be protected, while the consistent Smarr formula is only held in the extended thermodynamic phase space. After examining the sign of free energy, we conclude that there is no Hawking-Page transition since the massive Kiselev AdS black hole phase is always thermodynamically favored. Moreover, we study the phase transition between the Kiselev AdS black hole and BTZ black hole by considering the matchings for their temperature. We find that the Kiselev AdS black hole is still a thermodynamically more preferred phase, because it always has a smaller amount of free energy than the BTZ black hole, which seems to indicate that the anisotropic matter field may emerge naturally in BTZ black hole spacetime under some thermal fluctuations. We also show a first order phase transition between the Kiselev AdS black hole phase with -1w -1/2 and the black hole phase with -1/2w0. As the Kiselev AdS black hole has some notable features on the phase transition of black holes in three dimensions, it provides important clues to further investigate these both surprising and similar behaviors in four and higher dimensions.  相似文献   

19.
In this essay we introduce a theoretical framework designed to describe black hole dynamics. The difficulties in understanding such dynamics stems from the proliferation of scales involved when one attempts to simultaneously describe all of the relevant dynamical degrees of freedom. These range from the modes that describe the black hole horizon, which are responsible for dissipative effects, to the long wavelength gravitational radiation that drains mechanical energy from macroscopic black hole bound states. We approach the problem from a Wilsonian point of view, by building a tower of theories of gravity each of which is valid at different scales. The methodology leads to multiple new results in diverse topics including phase transitions of Kaluza-Klein black holes and the interactions of spinning black hole in non-relativistic orbits. Moreover, our methods tie together speculative ideas regarding dualities for black hole horizons to real physical measurements in gravitational wave detectors.  相似文献   

20.
陈刚  刘占芳  兰明建 《中国物理 B》2011,20(11):110404-110404
The thermodynamic properties of a (2 + 1)-dimensional black hole with non-linear electrodynamics from the viewpoint of geometry is studied and some kinds of temperatures of the black hole have been obtained. Weinhold curvature and Ruppeiner curvature are explored as information geometry. Moreover, based on Quevedo's theory, the Legendre invariant geometry is investigated for the black hole. We also study the relationship between the scalar curvatures of the above several metrics and the phase transitions produced from the heat capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号