首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The unsteady free convection boundary layer at the stagnation point of a two-dimensional body and an axisymmetric body with prescribed surface heat flux or temperature has been studied. The magnetic field is applied parallel to the surface and the effect of induced magnetic field has been considered. It is found that for certain powerlaw distribution of surface heat flux or temperature and magnetic field with time, the governing boundary layer equations admit a self-similar solution locally. The resulting nonlinear ordinary differential equations have been solved using a finite element method and a shooting method with Newton's corrections for missing initial conditions. The results show that the skin friction and heat transfer coefficients, andx-component of the induced magnetic field on the surface increase with the applied magnetic field. In general, the skin friction, heat transfer andx-component of the induced magnetic field for axisymmetric case are more than those of the two-dimensional case. Also they change more when the surface heat flux or temperature decreases with time than when it increases with time. The skin friction, heat transfer andx-component of the induced magnetic field are significantly affected by the magnetic Prandtl number and they increase as the magnetic Prandtl number decreases. The skin friction andx-component of the magnetic field increase with the dissipation parameter, but heat transfer decreases.
Instationäre freie Konvektionsströmung unter dem Einfluß eines magnetischen Feldes
Übersicht Untersucht wurde die instationäre freie Konvektionsgrenzschicht am Ruhepunkt eines zweidimensionalen und achsensymmetrischen umströmten Körpers bei vorgegebenem Wärmefluß bzw. bei vorgegebener Temperatur an der Oberfläche. Das magnetische Feld wird parallel zur Oberfläche angelegt, und der Einfluß des induzierten magnetischen Feldes wurde berücksichtigt. Es stellt sich heraus, daß bei bestimmter, zeitlicher Potenzgesetzverteilung des Wärmeflusses bzw. der Temperatur und des magnetischen Feldes an der Oberfläche die geltenden Grenzschichtgleichungen örtlich eine selbstähnliche Lösung erlauben. Die sich ergebenden nichtlinearen gewöhnlichen Differentialgleichungen wurden mittels einer Finite-Element-Methode und einer Shooting-Methode mit Newtonschen Korrekturen für fehlende Anfangsbedingungen gelöst. Die Ergebnisse zeigen, daß die Oberflächenreibung und die Wärmeübergangskoeffizienten sowie diex-Komponente des induzierten magnetischen Feldes an der Oberfläche mit dem angelegten magnetischen Feld zunehmen. Im allgemeinen sind die Oberflächenreibung, der Wärmeübergang und diex-Komponente des induzierten magnetischen Feldes im achsensymmetrischen Fall größer als die entsprechenden Werte im zweidimensionalen Fall. Außerdem verändern sich diese Werte beim zeitlichen Abfallen des Wärmeflusses an der Oberfläche bzw. der Temperatur in höherem Maße als bei der zeitlichen Zunahme dieser Werte. Die Oberflächenreibung, der Wärmeübergang und diex-Komponente des induzierten magnetischen Feldes werden durch die magnetische Prandtl-Zahl erheblich beeinflußt; sie nehmen mit abfallender magnetischer Prandtl-Zahl zu. Die Oberflächenreibung und diex-Komponente des magnetischen Feldes nehmen mit dem Wärmeableitungsparameter zu, der Wärmeübergang jedoch fällt ab.
  相似文献   

2.
The nonlinear convective instability of a plane horizontal conducting fluid layer placed in a uniform vertical magnetic field is studied [1]. A similar problem was previously considered in [2] but with allowance only for so-called weakly nonlinear third-order effects. In the present paper attention is concentrated on the study of the finite-amplitude instability mechanisms associated with the "hard" excitation of vibrations. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 23–28, January–February, 1998.  相似文献   

3.
Linear and weakly non-linear analyses of convection in a second-order fluid is investigated. The Rivlin-Ericksen constitutive equation is considered to give viscoelastic correction to the momentum equation. The linear and non-linear analyses are, respectively, based on the normal mode technique and truncated representation of Fourier series. The linear theory reveals that the critical eigenvalue is independent of viscoelastic effects and the principle of exchange of stabilities holds. An autonomous system of differential equations representing cellular convection arising in the non-linear study is solved numerically. The non-linear analysis reveals that finite amplitudes have random behaviour. The effect of viscoelasticity on the non-linear solutions is analysed by considering different projections in the phase-space. Also, the transient behaviour concerning the variations of the Nusselt number with time has been investigated. The onset of chaotic motion is also discussed in this paper.  相似文献   

4.
The stability of mechanical equilibrium of a horizontal layer of conducting fluid in the presence of a magnetic field rotating in a horizontal plane is considered. Both finite field rotation frequencies and the limiting case of high frequencies are investigated. It is shown that the magnetic field stabilizes the equilibrium. The dependence of the critical perturbation wavelength on the field strength is non-monotonic, and with increase in the magnetic field strength the mode of most dangerous perturbations changes from long-to short-wave type. Nonlinear three-dimensional convection regimes are calculated numerically. It is found that at finite supercriticalities and a sufficiently strong magnetic field the rolls and the hexagonal cells may be stable simultaneously.  相似文献   

5.
The principle of the exchange of stabilities for magnetohydrodynamic multicomponent convection is established. If this sufficient condition holds and there are perturbations, oscillatory motions of neutral or growing amplitude can exist in the fluid. The upper bounds for the complex growth rate of such motions when at least one of the boundaries is rigid are obtained.  相似文献   

6.
Exact solutions for fully developed natural convection in open-ended vertical concentric annuli under a radial magnetic field are presented. Expressions for velocity field, temperature field, mass flow rate and skin-friction are given, under more general thermal boundary conditions. It is observed that both velocity as well as temperature of the fluid is more in case of isothermal condition compared with constant heat flux case when gap between cylinders is less or equal to radius of inner cylinder while reverse phenomena occur when the gap between cylinders is greater than radius of inner cylinder.  相似文献   

7.
Summary An analysis is made of the laminar free convection of a viscous electrically conducting fluid from a hot infinite porous flat plate maintained at constant temperature under transverse magnetic field. Expressions have been obtained for the velocity, magnetic field, skin friction at the plate and the momentum thickness. The effect of the Grashof number and the Prandtl number on these quantities is discussed.  相似文献   

8.
An approximate analytical solution is presented for developing free convection flows of electrically conducting fluids between finite vertical channels which are subjected to a uniformly applied transverse magnetic field. Specifically, the basic approximation lies in the linearization of the governing boundary layer type of equations. It is demonstrated that the application of a transverse magnetic field reduces the induced flow rate in the channel and the heat transfer to the fluid.  相似文献   

9.
This work focuses on a theoretical investigation of the shape and equilibrium height of a magnetic liquid–liquid interface formed between two vertical flat plates in response to vertical magnetic fields. The formulation is based on an extension of the so called Young–Laplace equation for an incompressible magnetic fluid forming a two-dimensional free interface. A first order dependence of the fluid susceptibility with respect to the magnetic field is considered. The formulation results in a hydrodynamic-magnetic coupled problem governed by a nonlinear second order differential equation that describes the liquid–liquid meniscus shape. According to this formulation, five relevant physical parameters are revealed in this fluid static problem. The standard gravitational Bond number, the contact angle and three new parameters related to magnetic effects in the present study: the magnetic Bond number, the magnetic susceptibility and its derivative with respect to the field. The nonlinear governing equation is integrated numerically using a fourth order Runge-Kutta method with a Newton–Raphson scheme, in order to accelerate the convergence of the solution. The influence of the relevant parameters on the rise and shape of the liquid–liquid interface is examined. The interface shape response in the presence of a magnetic field varying with characteristic wavenumbers is also explored. The numerical results are compared with asymptotic predictions also derived here for small values of the magnetic Bond number and constant susceptibility. A very good agreement is observed. In addition, all the parameters are varied in order to understand how the scales influence the meniscus shape. Finally, we discuss how to control the shape of the meniscus by applying a magnetic field.  相似文献   

10.
An analysis is performed to study the heat transfer characteristics of natural convection over a vertical cone under the combined effects of a magnetic field and thermal radiation. The cone surface is subjected to a variable surface temperature. The fluid considered is a gray absorbing/emitting, but non-scattering medium. The boundary layer equations governing the flow are reduced to non-dimensional equations using non-dimensional quantities valid in the free-convection regime. The resulting non-dimensional governing equations are solved by an implicit finite-difference method of the Crank-Nicolson type, which is rapidly convergent and unconditionally stable. Numerical results are obtained for velocity, temperature, local and average skin friction, and local and average Nusselt numbers for various values of parameters occurring in the problem and are presented in the graphical form. Excellent agreement of the results obtained with available data is demonstrated.  相似文献   

11.
Experimental investigation is conducted to get insight into convective heat transfer features of the aqueous magnetic fluid flow over a fine wire under the influence of an external magnetic field. The convective heat transfer coefficient of the aqueous magnetic fluid flow around the heated wire is measured in both the uniform magnetic field and the magnetic field gradient. The effects of the external magnetic field strength and its orientation on the thermal behaviors of the magnetic fluids are analyzed. The experimental results show that the external magnetic field is a vital factor that affects the convective heat transfer performances of the magnetic fluids and the control of heat transfer processes of a magnetic fluid flow can be possible by applying an external magnetic field.  相似文献   

12.
The yield stress 0 of a magnetic fluid in a plane channel and the shape of the chains restraining the motion of the fluid are determined. The equilibrium problem for a magnetic fluid in a plane channel in the presence of an external magnetic field perpendicular to the plane of the channel and a pressure difference between the channel ends is solved within the framework of the structured fluid model. It is shown that equilibrium is possible only when the pressure difference does not exceed a certain limit p cr at which the shear stress on the channel wall has a maximum. In weak fields p cr and the corresponding 0 depend quadratically on the field and in strong fields tend to saturation. The phenomenological parameters of the model are estimated for the case in which the microstructure is a system of chains of magnetic particles. The results obtained are found to be in qualitative agreement with the experimentally observed dependence of p cr and 0 on the field and the magnetic phase concentration.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.3, pp. 4–10, May–June, 1992.The authors are grateful to V. V. Gogosov for useful discussions and his interest in the work.  相似文献   

13.
Linear and weakly non-linear analyses of convection in a micropolar fluid occupying a high-porosity medium are performed. The Brinkman–Eringen momentum equation is considered. The linear and non-linear analyses are, respectively, based on the normal mode technique and truncated representation of Fourier series. The linear theory for a two-phase system reiterates that the preferred mode of convection is stationary as in the case of a single-phase system. An autonomous system of differential equations representing cellular convection arising in the study is considered to analyse the critical points. The Nusselt number is obtained as a function of micropolar and porous medium parameters.  相似文献   

14.
 Rayleigh-Benard convection in two-layer systems is characterized by two distinct modes of flow coupling. These are: thermal coupling and mechanical coupling. Intellegible observations of the temperature field for both coupling mechanisms are provided. The flow coupling mechanisms are experimentally characterized as a function of the contrast in the buoyancy driving forces and in the viscosities of the two layers. Aside from the flow coupling between the layers, flow patterns in each layer, and their corresponding spatial transitions are found to be similar to those reported for single layer convection in rectangular boxes. Received: 7 January 1996/Accepted: 4 February 1997  相似文献   

15.
Li  Mingjun  Zhu  Li 《应用数学和力学(英文版)》2021,42(8):1171-1182
This study is to numerically test the interfacial instability of ferrofluid flow under the presence of a vacuum magnetic field. The ferrofluid parabolized stability equations(PSEs) are derived from the ferrofluid stability equations and the Rosensweig equations, and the characteristic values of the ferrofluid PSEs are given to describe the ellipticity of ferrofluid flow. Three numerical models representing specific cases considering with/without a vacuum magnetic field or viscosity are created to mathematically examine the interfacial instability by the computation of characteristic values. Numerical investigation shows strong dependence of the basic characteristic of ferrofluid Rayleigh-Taylor instability(RTI) on viscosity of ferrofluid and independence of the vacuum magnetic field.For the shock wave striking helium bubble, the magnetic field is not able to trigger the symmetry breaking of bubble but change the speed of the bubble movement. In the process of droplet formation from a submerged orifice, the collision between the droplet and the liquid surface causes symmetry breaking. Both the viscosity and the magnetic field exacerbate symmetry breaking. The computational results agree with the published experimental results.  相似文献   

16.
Entropy generation due to fluid flow and heat transfer inside a horizontal channel made of two parallel plates under the effect of transverse magnetic field is numerically investigated. The flow is assumed to be steady, laminar, hydro-dynamically and thermally fully developed of electrically conducting fluid. Both horizontal walls are maintained at constant temperatures higher than that of the fluid. The governing equations in Cartesian coordinate are solved by an implicit finite difference technique. After the flow field and the temperature distributions are obtained, the entropy generation profiles are computed and presented graphically. The factors, which were found to affect the problem under consideration are the magnetic parameter, Eckert number, Prandtl number, and the temperature parameter (θ). It was found that, entropy generation increased as all parameters involved in the present problem increased.  相似文献   

17.
Summary An analysis is made for the laminar free convection and heat transfer of a viscous electrically conducting fluid from a hot vertical plate in the case when the induced field is negligible compared to the imposed magnetic field. It is found that similar solutions for velocity and temperature exist when the imposed magnetic field (acting perpendicular to the plate) varies inversely as the fourth root of the distance from the lowest end of the plate. Explicit expressions for velocity, temperature, boundary layer thickness and Nusselt number are obtained and the effect of a magnetic field on them is studied. It is found that the effect of the magnetic field is to decrease the rate of heat transfer from the wall. In the second part, the method of characteristics is employed to obtain solutions of the time-dependent hydromagnetic free convection equations (hyperbolic) of momentum and energy put into integral form. The results yield the time required for the steady flow to be established, and the effect of the magnetic field on this time is studied.  相似文献   

18.
Various static surface shapes of a magnetic fluid containing bodies made of easily magnetizable materials (magnetic field concentrators) in a uniform applied magnetic field are numerically calculated with account for the gravity force, surface tension, and the dependence of the magnetic-fluid magnetization on the magnetic field strength. The possibility of a sudden change in surface shape is shown. Hysteresis in the surface shape with a cyclic increase and decrease in the applied field is predicted.  相似文献   

19.
20.
This paper describes the techniques adopted for visualization of Rayleigh–Benard convection during solidification of eutectic, hypo- and hyper-eutectic salt solutions. Neutrally buoyant hollow glass spheres were inducted in the body of the solidifying salt solution. The convection currents were captured by scattering of a laser beam by these beads. The apparatus has two components, namely: (i) measurement of interface/mushy region movement and temperature distribution and (ii) flow visualization with laser beam scattered by hollow glass spheres. The distinct nature of convection cells in the eutectic and hypo eutectic region is brought out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号