首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fourier transform spectra of water vapor enriched in 18O and 17O were recorded between 8012 and 9336 cm−1 and analyzed for the first time. High accuracy ab initio predictions of line positions and intensities by Partridge and Schwenke [J. Chem. Phys. 106 (1997) 4618-4639; 113 (2000) 6592-6597] were used in the process of spectrum assignment. Transitions involving the (031), (111), (130), (210), and (012) upper vibrational states were identified in the recorded spectra. As a result, 514 and 244 precise ro-vibrational energy levels were derived for the H218O and H217O molecules, respectively. High-order resonance perturbations between levels of the vibrational states involved were evidenced leading to the identification of a number of rotational levels of the (050) and (060) highly excited bending states.  相似文献   

2.
High-sensitivity Intracavity Laser Absorption Spectroscopy (ICLAS) is used to measure the high resolution absorption spectrum of H218O between 12,580 and 13,550 cm−1. This spectral region covers the 3v+δ polyad of very weak absorption. Four isotopologues of water (H218O, H216O, H217O, HD18O) are found to contribute to the observed spectrum. Spectrum analysis is performed with the aid of variational calculations and allowed for assigning 1126 lines belonging to H218O, while only 160 H218O lines are included in the HITRAN-2008 database. Altogether, 823 accurate energy levels of H218O are determined from transitions attributed to 26 upper vibrational states, 438 of them being reported for the first time. New information includes energy levels of four newly observed vibrational states of H218O: (2 4 0), (1 4 1), (0 4 2) and (2 3 1) at 13,167.718, 13,212.678, 13,403.71 and 15,073.975 cm−1, respectively. H218O transitions involving highly excited bending states like (1 6 0), (0 6 1), (0 7 1), (1 7 0), (0 9 0) and even (0 10 0) have been identified as a result of an intensity borrowing from stronger bands via high-order resonance interactions. Thirty-six new energy levels of H217O, present with a 2% relative concentration in our sample, could be determined. The rotational structure of the (0 2 3) state of HD18O at 13,245.497 cm−1 is also reported for the first time.  相似文献   

3.
Fourier transform absorption spectra of H218O-enriched and H217O-enriched water vapor in the 3ν + δ and 4ν polyad region have been analyzed. With the aid of theoretically calculated linelists, we have assigned 1014 lines attributed to H218O and 836 lines of 855 attributed to H217O. Seven new band origins are found for H217O and one for H218O.  相似文献   

4.
The rotational spectra of cyanophosphine, H2PCN, have been measured between 10 and 42.5 GHz by Fourier transform microwave spectroscopy. The rotational constants, centrifugal distortion constants, the 14N quadrupole coupling constant, and the nuclear spin-rotation coupling constants of 31P have been determined. Density functional ab initio calculations were performed, and the calculated values of the molecular constants are in excellent agreement with our experimentally determined results. The spectra of three isotopomers were measured, H2P12C14N, H2P13C14N, and H2P12C15N. The derived r0 structure is quite comparable to the ab initio predicted H2PCN equilibrium geometry.  相似文献   

5.
We investigate theoretically the energy cluster formation in highly excited rotational states of several pyramidal XH2D and XHD2 molecules (X = Bi, P, and Sb) by calculating, in a variational approach, the rotational energy levels in the vibrational ground states of these species for J?70. We show that at high J the calculated energy levels of the di-deuterated species XHD2 exhibit distinct fourfold cluster patterns highly similar to those observed for H2X molecules. We conclude from eigenfunction analysis that in the energy cluster states, the XHD2 molecule rotates about a so-called localization axis which is approximately parallel to one of the X-D bonds. For the mono-deuterated XH2D isotopologues, the rotational spectra are found to have a simple rigid-rotor structure with twofold clusters.  相似文献   

6.
We report the experimental Raman spectra of the ν2 band of H2O, D2O, and HDO in the vapor phase at room temperature. A complete interpretation of the Raman intensities is carried out employing the variational rovibrational wavefunctions obtained from a Hamiltonian in Radau coordinates and an ab initio polarizability surface at 514.5 nm. We show the importance of the rotation-vibration coupling to obtain the correct line intensities. Several tables with the assignments of the individual rotational-vibrational transitions and their Raman scattering strengths are reported. From these tables, the ν2 Raman spectra can be simulated up to 2000 K for H2O, and up to 300 K for D2O and HDO.  相似文献   

7.
A line list for D2 16O isotopologue of water molecule was calculated in the region 0-16,000 cm−1 with energy levels up to J=30. Variational calculations are based on the semi-theoretical potential energy surface obtained by morphing ab initio potential using the experimental energy levels of D2 16O. For energy levels with J=0, 2, 5 and 10, the standard deviation of the fit is 0.023 cm−1. This line list should make an excellent starting point for spectroscopic modeling and analysis of D2O rovibrational spectra.  相似文献   

8.
Centrifugal distortion analyses based entirely on high-quality infrared data are carried out for the ground vibrational states of H216O, H217O, and H218O. As a result of the analyses, the values of 27 rotation and distortion constants for each species are determined. By using these constants it was possible to improve considerably the accuracy of the literature values for rotational energy levels at high Jτ, especially for H217O and H218O. The experimental values for the energy levels are deduced from the observed rotational transitions constituting the fitted data.  相似文献   

9.
Energies and probabilities of Lyman transitions of high rovibrationally excited H2, HD and D2 molecules have been measured and compared with calculations. The experimental results are obtained from laser-induced fluorescence spectra that have been recorded in the spectral range from 60 500 to 83 500 cm−1, covering 2/3 of the hydrogen Lyman band system. The necessary vacuum-UV radiation is produced by stimulated anti-Stokes Raman scattering, providing a widely tunable radiation source with narrow spectral bandwidth to resolve single Lyman transitions. The highest internal energies of detected hydrogen isotopologues are close to the dissociation limit. This extends the available data base of Lyman transitions from and to higher rotational states (J > 10) of HD and D2.  相似文献   

10.
This paper reports the assignment of the rotational spectra of the m = 0 and 1 states of 13CC5H6-H2O and C6H5D-H2O dimers. The m = 1 progression was not identified or assigned for both 13CC5H6-H2O and C6H5D-H2O in the earlier work, though for the symmetric isotopomers (C6H6-H2O/D2O/H218O), they were identified [H.S. Gutowsky, T. Emilsson, E. Arunan, J. Chem. Phys. 99 (1993) 4883]. The m = 1 transitions for 13CC5H6-H2O and C6H5D-H2O were split into two, unlike that of the parent C6H6-H2O isotopomer. The splitting varied, somewhat randomly, with quantum numbers J and K. The m = 0 lines of 13CC5H6-H2O had significant overlap with the m = 1 lines of the parent isotopomer, clouding proper assignment, and leading to an rms deviation of about 200 kHz in the earlier work. The general semi-rigid molecular Hamiltonian coupled to an internal rotor, described recently by Duan et al. [Y.B. Duan, H.M. Zhang, K. Takagi, J. Chem. Phys. 104 (1996) 3914], is used in this work to assign both m = 0 and 1 states of 13CC5H6-H2O and C6H5D-H2O dimers. Consequently, the m = 0 fits for 13CC5H6-H2O/D2O have an rms deviation of only 4/7 kHz, comparable to experimental uncertainties. The fits for m = 1 transitions for 13CC5H6-H2O and C6H5D-H2O dimers have an rms deviation of about 200 kHz. However, it is of the same order of magnitude as that of the m = 1 state of the parent C6H6-H2O dimer. The A rotational constants determined from the m = 0 fits for both 13CC5H6-H2O and 13CC5H6-D2O isotopomers are identical and very close to the C rotational constant for 13CC5H6. This provides a direct experimental determination for the C rotational constant of 13CC5H6, which has a negligible dipole moment.  相似文献   

11.
We report the OH and OD stretching regions of the vapor phase Raman spectra of H2O, and of a D2O/HDO mixture, at room temperature. Also, the corresponding spectrum of H2O at ∼2000 K in a methane/air flame is reported. These spectra are interpreted in terms of transition moments of the molecular polarizability, based on high-level ab initio calculations of the polarizability surface, and on variational wavefunctions considering the rotational-vibrational coupling in full. As a byproduct of this analysis several tables have been compiled including scattering strengths and assignments for individual rotational transitions of the three species. From these tables the Raman spectra in the OH/OD stretching regions can be simulated over the range of temperatures up to 2000 K for H2O, and up to 300 K for D2O and HDO.  相似文献   

12.
The Fourier-transform absorption spectrum of H218O was recorded in the 6000-7940 cm−1 region and assigned on the base of the very accurate ab initio calculations by Partridge and Schwenke (PS) [J. Chem. Phys. 106 (1997) 4618-4639; J. Chem. Phys. 113 (2000) 6592-6597]. A set of 821 accurate rovibrational energy levels was obtained for six interacting states of the first hexad: (101), (120), (021), (200), (002), and (040). 290 of them are reported for the first time. The experimental line intensities are also estimated and compared with the PS calculations and the available literature data in the considered spectral range.  相似文献   

13.
A quantum cascade spectrometer was used in the laboratory to study H216O, H218O and HDO line intensities near 6.7 μm. The spectral region ranging from 1483 to 1487 cm1, which is suitable for the in situ laser sensing of these isotopologues in the atmosphere, was investigated using a continuous-wave distributed feed-back quantum cascade laser. Eight lines of water vapor isopologues were studied—one line of the ν2 band of H216O, one line of the 2ν2-ν2 band of H216O, two lines of the ν2 band of H218O and four lines of the ν2 band of HDO were carefully revisited. The measured intensities were thoroughly compared to relevant molecular databases and other experimental and calculated results. We also observe that the H2O, D2O, HDO equilibrium constant agrees excellently with previously determined values.  相似文献   

14.
We re-examined the submillimeter-wave transition frequencies of H2D+ (J = 110 − 111 at 372.4 GHz) and D2H+ (J = 110 − 101 at 691.7 GHz) to resolve suggested slight difference in velocity (vLSR) of these species detected in the cold pre-stellar core 16293E recently. Both H2D+ and D2H+ were generated in a magnetically confined extended-negative glow discharge of a gaseous mixture of H2/D2/Ar. A combination of small improvements in various aspects of the measurements such as double modulation technique combined with a conventional frequency modulation and magnetic field modulation and more efficient signal accumulation method allowed us to improve signal-to-noise ratio, and thus to determine the transition frequencies more accurately. Both transition frequencies for the H2D+ and D2H+ lines have been thus determined to be 372421.385(10) and 691660.483(20) MHz, respectively. These precise rest frequencies suggest that the vLSR of H2D+ and D2H+ in the pre-stellar core 16293E are indeed different as indicated in a recent astronomical observation. In addition, in this investigation, another transition of H2D+ which falls in this frequency region, J = 321 − 322 transition, has been observed at 646430.293(50) MHz. As H2D+ is a lightest asymmetric-top molecule and it is difficult to predict the rotational transition frequencies by using the effective asymmetric rotor Hamiltonian, any new observation of the rotational lines will be useful to improve the molecular parameters. The molecular constants for the ground state have been obtained for H2D+ and D2H+ by fitting these new measured frequencies together with the combination differences.  相似文献   

15.
The temperature dependence of air-broadened half-widths are reported for some 500 transitions in the (0 0 0)-(0 0 0) and (0 1 0)-(0 0 0) bands of H216O using gas sample temperatures ranging from 241 to 388 K. These observations were obtained from infrared laboratory spectra recorded at 0.006-0.011 cm−1 resolution with the McMath-Pierce Fourier transform spectrometer located at Kitt Peak. The experimental values of the temperature dependence exponents, η, were grouped into eight subsets and fitted to empirical functions in a semi-global procedure. Overall, the values of η were found to decrease with increasing rotational quantum number J. The number of measurements (over 2200) and transitions (586) involved exceeds by a large margin that of any other comparable reported study.  相似文献   

16.
Magnetic and EPR data have been collected for complex [Cu(L-Arg)2](NO3)2·3H2O (Arg=arginine). Magnetic susceptibility χ in the temperature range 2-160 K, and a magnetization isotherm at T=2.29(1) K with magnetic fields between 0 and 9 T were measured. The observed variation of χT with T indicates predominant antiferromagnetic interactions between Cu(II) ions coupled in 1D chains along the b axis. Fitting a molecular field model to the susceptibility data allows to evaluate g=2.10(1) for the average g-factor and J=−0.42(6) cm−1 for the nearest neighbor exchange coupling (defined as Hex=-∑JijSi·Sj). This coupling is assigned to syn-anti equatorial-apical carboxylate bridges connecting Cu(II) ion neighbors at 5.682 Å, with a total bond length of 6.989 Å and is consistent with the magnetization isotherm results. It is discussed and compared with couplings observed in other compounds with similar exchange bridges. EPR spectra at 9.77 were obtained in powder samples and at 9.77 and at 34.1 GHz in the three orthogonal planes of single crystals. At both microwave frequencies, and for all magnetic field orientations a single signal arising from the collapse due to exchange interaction of resonances corresponding to two rotated Cu(II) sites is observed. From the EPR results the molecular g-tensors corresponding to the two copper sites in the unit cell were evaluated, allowing an estimated lower limit |J |>0.1 cm−1 for the exchange interaction between Cu(II) neighbors, consistent with the magnetic measurements. The observed angular variation of the line width is attributed to dipolar coupling between Cu(II) ions in the lattice.  相似文献   

17.
High precision measurements of the atmospheric trace gas nitrous oxide have been extended up through 1.5 THz. The data set includes ground state, ν2, 2ν2, 15NNO, N15NO, and N218O spectra up to J = 68. Improved Hamiltonian parameters are given.  相似文献   

18.
Monte Carlo simulations show that, at one monolayer coverage, H2 molecules adsorbed on a NaCl(0 0 1) surface occupy all Na+ sites and form a commensurate c(2 × 2) structure. If the Cl sites are occupied as well, a bi-layer p(2 × 1) structure forms. An examination of the H2 molecules’ rotational motion shows the molecular axes are azimuthally delocalized and so both of the structures acquire (1 × 1) symmetry in accord with experimental observations. These calculations also show that helicoptering o-H2 (J = 1, m = ±1) prefer to sit on top of Na+ sites, while cartwheeling o-H2 (J = 1, m = 0) prefers to locate over Cl sites, in agreement with other work.  相似文献   

19.
The monolayer hydrate (MLH) K0.3CoO2·0.4H2O was synthesized from K0.6CoO2 by extracting K+ cations using K2S2O8 as an oxidant and the subsequent intercalation of water between the layers of edge-sharing CoO6 octahedra. A hexagonal structure (space group P63/mmc) with lattice parameters a=2.8262(1) Å, c=13.8269(6) Å similar to the MLH Na0.36CoO2·0.7H2O was established using high-resolution synchrotron X-ray powder diffraction data. The K/H2O layer in the K-MLH is disordered, which is in contrast to the Na-MLH. At low temperatures metallic and paramagnetic behavior was found.  相似文献   

20.
The chemical preparation, the calorimetric studies and the crystal structure are given for two new organic sulfates NH3(CH2)5NH3SO4 1.5H2O (DAP-S) and NH3(CH2)9NH3SO4·H2O (DAN-S). DAP-S is monoclinic P21/n with unit cell dimensions: a=11.9330(2) Å; b=10.9290(2) Å; c=17.5260(2) Å; β=101.873(1)°; V=2236.77(6) Å3; and Z=8. Its atomic arrangement is described as inorganic layers of units and water molecules separated by organic chains. DAN-S is monoclinic P21/c with unit cell parameters: a=5.768(2) Å; b=25.890(10) Å; c=11.177(5) Å; β=115.70(4)°; V=1504.0(11) Å3 and Z=4. Its structure exhibits infinite chains, parallel to the [100] direction where the organic cations are interconnected. In both structures a network of strong and weak hydrogen bonds connects the different components in the building of the crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号