首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The N2- and O2-broadening effect have been investigated for 10 absorption lines of the CO2 (3001)III ← (0000) band centered at 6231 cm−1, in the range from P(28) to R(28) by a near-infrared diode-laser spectrometer. We have analyzed the observed line profiles with the Galatry function, and determined the N2- and O2-broadening coefficients precisely. The air-broadening coefficients for these lines have been derived. The present results are compared with those of the previous studies for this band and with some of the other bands.  相似文献   

2.
This work presents new measurements of HDO line parameters in the near-infrared and visible regions (11 500-23 000 cm−1). The measurements consist in high-resolution Fourier transform absorption spectra of H2O/HDO/D2O vapor mixtures, obtained using a long absorption path. Spectra with and without nitrogen as the buffer gas were recorded. Due to the simultaneous presence of the three isotopologues H2O, D2O, and HDO, the H2O lines removal and the D2O lines identification were two necessary preliminary steps to derive the HDO line parameters. The D2O contribution was small and confined to the well-known 4ν1 + ν3 band. An extensive listing of HDO spectroscopic parameters was obtained, for the first time, by fitting some 3256 observed lines to Voigt line profiles. The list contains calibrated line positions, absorption cross-sections and, for many of the lines, N2-broadening coefficients, as well as N2-induced frequency shifts. As a result of the low HDO vapor pressures, it was not possible to retrieve the self-broadening parameters. The list is available on the http://www.ulb.ac.be/cpm website.  相似文献   

3.
A high resolution (0.0018 cm−1) Fourier transform instrument has been used to record the spectrum of an enriched 34S (95.3%) sample of sulfur dioxide. A thorough analysis of the ν2, 2ν2 − ν2, ν1, ν1 + ν2 − ν2, ν3, ν2 + ν3 − ν2, ν1 + ν2 and ν2 + ν3 bands has been carried out leading to a large set of assigned lines. From these lines ground state combination differences were obtained and fit together with the existing microwave, millimeter, and terahertz rotational lines. An improved set of ground state rotational constants were obtained. Next, the upper state rotational levels were fit. For the (0 1 0), (1 1 0) and (0 1 1) states, a simple Watson-type Hamiltonian sufficed. However, it was necessary to include explicitly interacting terms in the Hamiltonian matrix in order to fit the rotational levels of the (0 2 0), (1 0 0) and (1 0 1) states to within their experimental accuracy. More explicitly, it was necessary to use a ΔK = 2 term to model the Fermi interaction between the (0 2 0) and (1 0 0) levels and a ΔK = 3 term to model the Coriolis interaction between the (1 0 0) and (0 0 1) levels. Precise Hamiltonian constants were derived for the (0 0 0), (0 1 0), (1 0 0), (0 0 1), (0 2 0), (1 1 0) and (0 1 1) vibrational states.  相似文献   

4.
Line parameters for water vapour in natural abundance have recently been determined for the 9250-13 000 cm−1 region [M.-F. Mérienne, A. Jenouvrier, C. Hermans, A.C. Vandaele, M. Carleer, C. Clerbaux, P.-F. Coheur, R. Colin, S. Fally, M. Bach, J. Quant. Spectrosc. Radiat. Transfer 82 (2003) 99] and the 13 000-26 000 cm−1 region [P.-F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Mérienne, C. Hermans, A.C. Vandaele, J. Quant. Spectrosc. Radiat. Transfer 74 (2002) 493] using a high-resolution Fourier-transform spectrometer with a long-path absorption cell. These spectra are analysed using several techniques including variational line lists and assignments made. In total, over 15 000 lines were assigned to transitions involving more than 150 exited vibrational states of H216O. Twelve new vibrational band origins are determined and estimates for a further 16 are presented.  相似文献   

5.
The vibrational structure of the electronic state of C3 in the region 26 000-30 775 cm−1 has been re-examined, using laser excitation spectra of jet-cooled molecules. Rotational constants and vibrational energies have been determined for over 60 previously-unreported vibronic levels; a number of other levels have been re-assigned. The vibrational structure is complicated by interactions between levels of the upper and lower Born-Oppenheimer components of the state, and by the effects of the double minimum potential in the Q3 coordinate, recognized by Izuha and Yamanouchi [16]. The present work shows that there is also strong anharmonic resonance between the overtones of the ν1 and ν3 vibrations. For instance, the levels 2 1+ 1 and 0 1 + 3 are nearly degenerate in zero order, but as a result of the resonance they give rise to two levels 139 cm−1 apart, centered about the expected position of the 2 1+ 1 level. With these irregularities recognized, every observed vibrational level up to 30 000 cm−1 (a vibrational energy of over 5000 cm−1) can now be assigned. A vibronic level at 30181.4 cm−1, which has a much lower B′ rotational constant than nearby levels of the state, possibly represents the onset of vibronic perturbations by the electronic state; this state is so far unknown, but is predicted by the ab initio calculations of Ahmed et al. [36].  相似文献   

6.
The far-infrared and middle-infrared emission spectra of deuterated water vapour were measured at temperatures 1370, 1520, and 1940 K in the ranges 320-860 and 1750-3400 cm−1. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. More than 3550 new measured lines for the D216O molecule corresponding to transitions from highly excited rotational levels of the (0 2 0), (1 0 0), and (0 0 1) vibrational states are reported. These new lines correspond to rotational states with higher values of the rotational quantum numbers compared to previously published determinations: Jmax = 29 and Ka(max) = 22 for the (0 2 0) state, Jmax = 29 and Ka(max) = 25 for the (1 0 0) state, and Jmax = 30 and Ka(max) = 23 for the (0 0 1) state. The extended set of 1987 experimental rotational energy levels for the (0 2 0), (1 0 0), and (0 0 1) vibration states including all previously available data has been determined. For the data reduction we used the generating function model. The root mean square (RMS) deviation between observed and calculated values is 0.004 cm−1 for 1952 rovibrational levels of all three vibration states. A comparison of the observed energy levels with the best available values from the literature and with the global predictions from molecular electronic potential energy surfaces of water isotopic species [H. Partridge, D.W. Schwenke, J. Chem. Phys. 106 (1997) 4618] is discussed. The latter confirms a good consistency of mass-dependent DBOC corrections in the PS potential function with new experimental rovibrational data.  相似文献   

7.
The absorption spectrum of N2O, at room temperature, was recorded in the 5400-11 000 cm-1 region at resolutions ranging from 0.008 cm-1 near 5400 to 0.023 cm-1 near 11 000 cm-1 using a Bruker IFS120HR Fourier transform spectrometer. Sample pressure/absorption path length products ranging from 200 to 4700 mbar×m were used. More than 6000 absolute line intensities have been measured in 64 different bands of 14N216O. Using wavefunctions previously determined from a global fit of an effective Hamiltonian to more than 18 000 line positions [Tashkun SA, Perevalov VI, and Teffo JL, to be published], the experimental intensities measured in this work and by Toth [J Mol Spectrosc 1999;197:158-87] were fit using 62 parameters of a corresponding effective dipole moment, with residuals very close to the experimental uncertainty.  相似文献   

8.
In H2 and H2/CO oxidation, the H + O2 + M termination step is one of the most important reactions at elevated pressures. With the recent, increased interest in synthetic fuels, an accurate assessment of its rate coefficient becomes increasingly important, especially for real fuel/air mixtures. Ignition delay times in shock-tube experiments at the conditions selected in this study are only sensitive to the rates of the title reaction and the branching reaction H + O2 = OH + O, the rate of which is known to a high level of accuracy. The rate coefficient of the title reaction for M = N2, Ar, and H2O was determined by adjusting its value in a detailed chemical kinetics model to match ignition delay times for H2/CO/O2/N2, H2/CO/O2/Ar, and H2/CO/O2/N2/H2O mixtures with fuel/air equivalence ratios of ? = 0.5, 0.9, and 1.0. The rate of H + O2 + N2 = HO2 + N2 was measured to be 2.7 (−0.7/+0.8) × 1015 cm6/mol2 s for T = 916-1265 K and P = 1-17 atm. The present determination agrees well with the recent study of Bates et al. [R.W. Bates, D.M. Golden, R.K. Hanson, C.T. Bowman, Phys. Chem. Chem. Phys. 3 (2001) 2337-2342], whose rate expressions are suggested herein for modeling the falloff regime. The rate of H + O2 + Ar = HO2 + Ar was measured to be 1.9 × 1015 cm6/mol2 s for T = 932-965 K and P = 1.4 atm. The rate of H + O2 + H2O = HO2 + H2O was measured to be 3.3 × 1016 cm6/mol2 s for T = 1071-1161 K and P = 1.3 atm. These are the first experimental measurements of the rates of the title reactions in practical combustion fuel/air mixtures.  相似文献   

9.
We present a direct side-by-side comparison of the interaction of Li atoms and N2 molecules on the atomically stepped Ru(1 0 9) single crystal surface and on the atomically smooth Ru(0 0 1) single crystal surface using infrared reflection absorption spectroscopy (IRAS) and temperature programmed desorption (TPD). At low adsorbate coverages there is spectroscopic evidence for the formation of a Lix(N2)y complex on the Ru(1 0 9) surface, whereas no such complex is observed on the Ru(0 0 1) surface. This complex is due to local interactions between an adsorbed Li atom and N2 adsorbed on the atomic steps of Ru(1 0 9). The short range interaction near the atomic steps is characterized by the development of several highly red-shifted ν(N2) modes in the region of ∼2130 cm−1 in the IR spectra. Adsorbed N2 molecules on both Ru(1 0 9) and Ru(0 0 1) also are influenced by the long range electrostatic field produced by Li adsorbate atoms, causing a red shift in the uncomplexed N2 species, which monotonically increases as the Li coverage in increased. On the Ru(0 0 1) surface, small coverages of N2 influenced by the long range effect of Li are initially chemisorbed parallel to the surface resulting in the absence of infrared activity. In addition we have also found that Li does not cause N-N bond scission on Ru(0 0 1) below 250 K.  相似文献   

10.
The weak absorption spectrum of dideuterated water, D2O, has been recorded between 12 450 and 12 850 cm−1 by high sensitivity Intracavity Laser Absorption Spectroscopy (ICLAS). This spectral region corresponds to the (ν1 + ν2/2 + ν3) = 5 polyad, dominated by the 4ν1 + ν3 band centered at 12 743.035 cm−1. The achieved sensitivity has allowed for the detection of lines with a minimum intensity of 2 × 10−28 cm/molecule i.e. typically two orders of magnitude lower than previous observations in the region considered. A total of 586 energy levels belonging to 11 vibrational states were determined. The rovibrational assignment process of 1025 lines ascribed to D2O was based on new results of variational calculations by Shirin et al. [S.V. Shirin, N.F. Zobov, O.L. Polyansky, J. Quant. Spectrosc. Radiat. Transfer, in press, doi:10.1016/j.jqsrt.2007.07.010]. The overall agreement between these calculations and the observed spectrum is good both for the line positions and line intensities. The difficulties encountered while performing the rovibrational labeling and the assignment of the weakest transitions not included in Combination Differences relations, are discussed.  相似文献   

11.
The high resolution absorption spectrum of dideuterated water, D216O, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) in the 13 600-14 020 cm−1 spectral region which is the highest energy region reported so far for this water isotopologue. Because the HD16O absorption is stronger by three orders of magnitude in the region under study, it was necessary to use high deuterium enrichment in order to minimize the HD16O absorption lines overlapping the D216O spectrum. With the high sensitivity achieved (noise equivalent absorption αmin ∼10−9 cm−1), transitions with line strengths on the order of 5 × 10−28 cm molecule−1 could be detected. The spectrum analysis, based on recent variational calculations has provided a set of 177 new rovibrational energy levels belonging to six vibrational states.The most complete set of 53 vibrational energy levels of D216O, including the three newly determined band origins, was constructed from an exhaustive review of the literature data. The fitting of the parameters of the vibrational effective Hamiltonian has allowed to reproduce the whole set of vibrational energies with an rms deviation of 0.055 cm−1. This simple model gave consistent vibrational labels of the D216O states up to 18 000 cm−1. Above 15 000 cm−1, Fermi and Darling-Dennison resonance interaction were found to induce strong vibrational mixings of the wave functions in the normal mode basis, leading to ambiguous vibrational labeling.  相似文献   

12.
In this paper the global symmetry of the Hubbard model on a bipartite lattice is found to be larger than SO(4). The model is one of the most studied many-particle quantum problems, yet except in one dimension it has no exact solution, so that there remain many open questions about its properties. Symmetry plays an important role in physics and often can be used to extract useful information on unsolved non-perturbative quantum problems. Specifically, here it is found that for on-site interaction U ≠ 0 the local SU(2) × SU(2) × U(1) gauge symmetry of the Hubbard model on a bipartite lattice with NaD sites and vanishing transfer integral t = 0 can be lifted to a global [SU(2) × SU(2) × U(1)]/Z22 = SO(3) × SO(3) × U(1) symmetry in the presence of the kinetic-energy hopping term of the Hamiltonian with t > 0. (Examples of a bipartite lattice are the D-dimensional cubic lattices of lattice constant a and edge length L = Naa for which D = 1, 2, 3,... in the number NaD of sites.) The generator of the new found hidden independent charge global U(1) symmetry, which is not related to the ordinary U(1) gauge subgroup of electromagnetism, is one half the rotated-electron number of singly occupied sites operator. Although addition of chemical-potential and magnetic-field operator terms to the model Hamiltonian lowers its symmetry, such terms commute with it. Therefore, its 4NaD energy eigenstates refer to representations of the new found global [SU(2) × SU(2) × U(1)]/Z22 = SO(3) × SO(3) × U(1) symmetry. Consistently, we find that for the Hubbard model on a bipartite lattice the number of independent representations of the group SO(3) × SO(3) × U(1) equals the Hilbert-space dimension 4NaD. It is confirmed elsewhere that the new found symmetry has important physical consequences.  相似文献   

13.
The weak absorption spectrum of dideuterated water, D2O, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) between 11 400 and 11 900 cm−1. This spectrum is dominated by the 3ν1 + ν2 + ν3 and the ν1 + ν2 + 3ν3 centered at 11 500.25 and 11 816.64 cm−1, respectively. A total of 530 energy levels belonging to eight vibrational states were determined. The rovibrational assignment process of the 840 lines attributed to D2O was mostly based on the results of new variational calculations consisting in a refinement of the potential energy surface of Shirin et al. [J. Chem. Phys., 120 (2004) 206] on the basis of recent experimental observations, and a dipole moment surface from Schwenke and Partridge [J. Chem. Phys. 113 (2000) 6592]. The overall agreement between these calculations and the observed spectrum is very good both for the line positions and the line intensities.  相似文献   

14.
S.H. Cheung 《Surface science》2007,601(7):1754-1762
We describe the growth and properties of well-defined epitaxial TiO2−xNx rutile for the first time. A mixed beam of atomic N and O radicals was prepared in an electron cyclotron resonance plasma source and Ti was supplied from a high-temperature effusion cell or an electron beam evaporator, depending on the required flux. A very high degree of structural quality is generally observed for films grown under optimized anion-rich conditions. N substitutes for O in the lattice, but only at the ∼1 at.% level, and is present as N3−. Epitaxial growth of TiO2 and TiO2−xNx rutile prepared under anion-rich conditions is accompanied by Ti indiffusion, leading to interstitial Ti (Tii), which is a shallow donor in rutile. Our data strongly suggest that Tii donor electrons compensate holes associated with substitutional N2− (i.e., Ti(III) + N2− → Ti(IV) + N3−), leading to highly resistive or weakly n-type, but not p-type material. Ti 2p core-level line shape analysis reveals hybridization of N and Ti, as expected for substitutional N. Ti-N hybridized states fall in the gap just above the VBM, and extend the optical absorption well into the visible.  相似文献   

15.
We present a direct side-by-side comparison of the adsorption and desorption of nitrogen on the atomically-stepped Ru(1 0 9) surface and the atomically-flat Ru(0 0 1) surface. Both infrared reflection absorption spectroscopy (IRAS) and temperature programmed desorption (TPD) are employed in this study, along with density functional theory (DFT). We find that the chemisorptive terminal binding of N2 is stronger on the atomic step sites than on the terrace sites of Ru(1 0 9) as indicated by TPD and by a reduction of the singleton vibrational frequency, ν(N2), by ∼9 cm−1, comparing steps to terraces. In addition, we find that metal-metal compression effects on the terrace sites of Ru(1 0 9) cause stronger binding of N2 than found on the Ru(0 0 1) surface, as indicated by a reduction of the terrace-N2 singleton vibrational frequency by ∼11 cm−1 when compared to the singleton N2 mode on Ru(0 0 1). These spectroscopic results, comparing compressed terrace sites to Ru(0 0 1) sites and confirmed by TPD and DFT, indicate that N2 bonds primarily as a σ-donor to Ru. Using equimolar 15N2 and 14N2, it is found that dynamic dipole coupling effects present at higher N2 coverages may be partially eliminated by isotopically detuning neighbor oscillators. These experiments, considered together, indicate that the order of the bonding strength for terminal-N2 on Ru is: atomic steps > atomic terraces > Ru(0 0 1). DFT calculations also show that 4-fold coordinated N2 may be stabilized in several structures on the double-atom wide steps of Ru(1 0 9) and that this form of bonding produces substantial decreases in the N2 vibrational frequency and increases in the binding energy, compared to terminally-bound N2. These highly coordinated N2 species are not observed by IRAS.  相似文献   

16.
High resolution Fourier transform spectra of a sample of sulfur dioxide, enriched in 34S (95.3%). were completely analyzed leading to a large set of assigned lines. The experimental levels derived from this set of transitions were fit to within their experimental uncertainties using Watson-type Hamiltonians. Precise band centers, rotational and centrifugal distortion constants were determined. The following band centers in cm−1 were obtained: ν0(3ν2)=1538.720198(11), ν0(ν1 + ν3)=2475.828004(29), ν0(ν1 + ν2 + ν3)=2982.118600(20), ν0(2ν3)=2679.800919(35), and ν0(2ν1 + ν3)=3598.773915(38). The rotational constants obtained in this work have been fit together with the rotational constants of lower-lying vibrational states [W.J. Lafferty, J.-M. Flaud, R.L. Sams, EL Hadjiabib, J. Mol. Spectrosc. 252 (2008) 72-76] to obtain equilibrium constants as well as vibration-rotation constants. These equilibrium constants have been fit together with those of 32S16O2 [J.-M. Flaud, W.J. Lafferty, J. Mol. Spectrosc. 16 (1993) 396-402] leading to an improved equilibrium structure. Finally the observed band centers have been fit to obtain anharmonic rotational constants.  相似文献   

17.
The far-infrared emission spectra of deuterated water vapour were measured at different temperatures (1370, 1520, and 1950 K) in the range 320-860 cm−1 at a resolution of 0.0055 cm−1. The measurements were performed in an alumina cell with an effective length of hot gas of about 50 cm. More than 1150 new measured lines for the D216O molecule corresponding to transitions between highly excited rotational levels of the (0 0 0) and (0 1 0) vibrational states are reported. These new lines correspond to rotational states with higher values of the rotational quantum numbers compared to previously published determinations: Jmax=26 and for the (0 0 0) ← (0 0 0) band, Jmax=25 and for the (0 1 0) ← (0 1 0) band, and Jmax=26 and for the (0 1 0) ← (0 0 0) band. The estimated accuracy of the measured line positions is 0.0005 cm−1. To our knowledge no experimentally measured rotational transitions for D216O within an excited vibrational state have been available in the literature so far. An extended set of experimental rotational energy levels for (0 0 0) and (0 1 0) vibration states including all previously available data has been determined. For the data reduction we used the generating function model. The root mean square (RMS) deviation between observed and calculated values is 0.0012 cm−1 for 692 rotational levels of the (0 0 0) state and 0.0010 cm−1 for 639 rotational levels of the (0 1 0) vibrational state. A comparison of the observed energy levels with the best available values from the literature and with the global predictions from molecular electronic potential energy surface [J. Chem. Phys. 106 (1997) 4618] for the (0 0 0) and (0 1 0) states is discussed.  相似文献   

18.
The high resolution absorption spectrum of dideuterated water, D2O, has been recorded by Intracavity Laser Absorption Spectroscopy (ICLAS) in the 12 850-13 380 cm−1 spectral region which is the higher energy region reported so far for this water isotopologue. Very high deuterium enrichment was necessary to minimize the HDO absorption lines overlapping the D2O spectrum. The achieved sensitivity (noise equivalent absorption αmin ∼ 10−9 cm−1) allowed detecting transitions with line strengths on the order of 5 × 10−28 cm/molecule. The spectrum analysis, based on recent variational calculations has provided a set of 422 new rovibrational energy levels belonging to 11 vibrational states, including rotational sublevels for four new vibrational states and one level of the (0 9 1) highly excited bending state. The very weak (1 0 4)-(0 0 0) band at 13 263.902 cm−1, which is the highest D216O band currently observed, could be assigned despite the fact that the HDO absorption in the region is stronger by three orders of magnitude. The list of 996 D216O transitions is provided as Supplementary Material.  相似文献   

19.
The absorption spectrum of ozone, 16O3, has been recorded in the 5903-5960 cm−1 region by high sensitivity CW-cavity ring down spectroscopy (αmin ∼ 5 × 10−10 cm−1). The ν1 + 3ν2 + 3ν3 and 4ν1 + ν2 + ν3 A-type bands centred at 5919.15 and 5947.07 cm−1 were newly observed. A set of 173 and 168 energy levels could be experimentally determined for the (1 3 3) and (4 1 1) states, respectively. Except for a few Ka = 5 levels of the (4 1 1) state, the rotational structure of the two states was found mostly unperturbed. The spectroscopic parameters were determined from a fit of the corresponding line positions by considering the (1 3 3) and (4 1 1) states as isolated. The determined effective Hamiltonian and transition moment operators were used to generate a list of 785 transitions given as Supplementary Material.  相似文献   

20.
More than 250 rotationally resolved vibrational bands of the A2B2-X2A1 electronic transition of 15NO2 have been observed in the 14 300-18 000 cm−1 range. The bands have been recorded in a recently constructed setup designed for high resolution spectroscopy of jet cooled molecules by combining time gated fluorescence spectroscopy and molecular beam techniques. The majority of the observed bands has been rotationally assigned and can be identified as transitions starting from the vibrational ground state or from vibrationally excited (hot band) states. An exceptionally strong band is located at 14 851 cm−1 and studied in more detail as a typical benchmark transition to monitor 15NO2 in atmospheric remote sensing experiments. Standard rotational fit routines provide band origins, rotational and spin rotation constants. A subset of 177 vibronic levels of 2B2 vibronic symmetry has been analyzed in the energy range between 14 300 and 17 250 cm−1, in terms of integrated density and using Next Neighbor Distribution. It is found that the overall statistical properties and polyad structure of 15NO2 are comparable to those of 14NO2 but that the internal structures of the polyads are completely different. This is a direct consequence of the X2A1-A2B2 vibronic mixing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号