首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new model for correlated electrons is presented which is integrable in one-dimension. The symmetry algebra of the model is the Lie superalgebra gl(2|1) which depends on a continuous free parameter. This symmetry algebra contains the pairing algebra as a subalgebra which is used to show that the model exhibits Off-Diagonal Long-Range Order in any number of dimensions. Received: 9 December 1997 / Revised: 12 February 1998 / Accepted: 17 March 1998  相似文献   

2.
The quantum phase transition in the ground state of the extended spin S = 1/2 XY model has been studied in detail. Using the exact solution of the model the low temperature thermodynamics, as well as the ground state phase diagram of the model in the presence of applied uniform and/or staggered magnetic field are discussed. Received 29 November 2002 / Received in final form 24 February 2003 Published online 11 April 2003 RID="a" ID="a"e-mail: japa@iph.hepi.edu.ge  相似文献   

3.
We present a class of optimum ground states for quantum spin- models on the Cayley tree with coordination number 3. The interaction is restricted to nearest neighbours and contains 5 continuous parameters. For all values of these parameters the Hamiltonian has parity invariance, spin-flip invariance, and rotational symmetry in the xy-plane of spin space. The global ground states are constructed in terms of a 1-parametric vertex state model, which is a direct generalization of the well-known matrix product ground state approach. By using recursion relations and the transfer matrix technique we derive exact analytical expressions for local fluctuations and longitudinal and transversal two-point correlation functions. Received 1 March 1999  相似文献   

4.
CsCuCl3 is a ferromagnetically stacked triangular spin-1/2 antiferromagnet. We discuss models for its zero-temperature magnetization process. The models range from three antiferromagnetically coupled ferromagnetic chains to the full three-dimensional situation. The situation with spin-1/2 is treated by expansions around the Ising limit and exact diagonalization. Further, weak-coupling perturbation theory is used mainly for three coupled chains which are also investigated numerically using the density-matrix renormalization group technique. We find that already the three-chain model gives rise to the plateau-like feature at one third of the saturation magnetization which is observed in magnetization experiments on CsCuCl3 for a magnetic field perpendicular to the crystal axis. For a magnetic field parallel to the crystal axis, a jump is observed in the experimental magnetization curve in the region of again about one third of the saturation magnetization. In contrast to earlier spinwave computations, we do not find any evidence for such a jump with the model in the appropriate parameter region. Received 25 October 1999 and Received in final form 30 December 1999  相似文献   

5.
Properties of low-dimensional spin-Peierls systems are described by using a one-dimensional S =1/2 antiferromagnetic Heisenberg chain linearly coupled to a single phonon mode of wave vector (whose contribution is expected to be dominant). By exact diagonalizations of small rings with up to 24 sites supplemented by a finite size scaling analysis, static and dynamical properties are investigated. Numerical evidences are given for a spontaneous discrete symmetry breaking towards a spin gapped phase with a frozen lattice dimerization. Special emphasis is put on the comparative study of the two inorganic spin-Peierls compounds CuGeO3 and NaV2O5 and the model parameters are determined from a fit of the experimental spin gaps. We predict that the spin-phonon coupling is 2 or 3 times larger in NaV2O5 than in CuGeO3. Inelastic neutron scattering spectra are calculated and similar results are found in the single phonon mode approximation and in the model including a static dimerization. In particular, the magnon S =1 branch is clearly separated from the continuum of triplet excitations by a finite gap. Received: 30 July 1997 / Revised: 16 September 1997 / Accepted: 10 October 1997  相似文献   

6.
The Heisenberg spin-S quantum antiferromagnet is studied near the large-spin limit, applying a new continuous unitary transformation which extends the usual Bogoliubov transformation to higher order in the 1/S-expansion of the Hamiltonian. This allows to diagonalize the bosonic Hamiltonian resulting from the Holstein-Primakoff representation beyond the conventional spin-wave approximation. The zero-temperature flow equations derived from the extension of the Bogoliubov transformation to order for the ground-state energy, the spin-wave velocity, and the staggered magnetization are solved exactly and yield results which are in agreement with those obtained by a perturbative treatment of the magnon interactions. Received: 19 March 1998 / Revised: 2 June 1998 / Accepted: 8 June 1998  相似文献   

7.
Using the density matrix renormalization group method (DMRG) we calculate the magnetization of frustrated S=1/2 Heisenberg chains for various modulation patterns of the nearest neighbour coupling: commensurate, incommensurate with sinusoidal modulation and incommensurate with solitonic modulation. We focus on the order of the phase transition from the commensurate dimerized phase (D) to the incommensurate phase (I). It is shown that the order of the phase transition depends sensitively on the model. For the solitonic model in particular, a k-dependent elastic energy modifies the order of the transition. Furthermore, we calculate gaps in the incommensurate phase in adiabatic approximation. Received: 9 March 1998 / Accepted: 17 April 1998  相似文献   

8.
Specific heat (CV) measurements in the spin-1/2 Cu2(C2H12N2)2Cl4 system under a magnetic field up to H =8.25 T are reported and compared to the results of numerical calculations based on the 2-leg antiferromagnetic Heisenberg ladder. While the temperature dependences of both the susceptibility and the low-field specific heat are accurately reproduced by this model, deviations are observed above the critical field HC1 at which the spin gap closes. In this Quantum High Field phase, the contribution of the low-energy quantum fluctuations are stronger than in the Heisenberg ladder model. We argue that this enhancement can be attributed to dynamical lattice fluctuations. Finally, we show that such a Heisenberg ladder, for H > H C1, is unstable, when coupled to the 3D lattice, against a lattice distortion. These results provide an alternative explanation for the observed low temperature ( K-0.8 K) phase (previously interpreted as a 3D magnetic ordering) as a new type of incommensurate gapped state. Received: 23 July 1998 / Accepted: 24 August 1998  相似文献   

9.
We examine spin vortices in ferromagnetic quantum Heisenberg models with planar anisotropy on two-dimensional lattices. The symmetry properties and the time evolution of vortices built up from spin-coherent states are studied in detail. Although these states show a dispersion typical for wave packets, important features of classical vortices are conserved. Moreover, the results on symmetry properties provide a construction scheme for vortex-like excitations from exact eigenstates, which have a well-controlled time evolution. Our approach works for arbitrary spin length both on triangular and square lattices. Received 2 October 1998  相似文献   

10.
We study the quantum phase transition between a band (“ionic”) insulator and a Mott-Hubbard insulator, realized at a critical value in a bipartite Hubbard model with two inequivalent sites, whose on-site energies differ by an offset . The study is carried out both in D=1 and D=2 (square and honeycomb lattices), using exact Lanczos diagonalization, finite-size scaling, and Berry's phase calculations of the polarization. The Born effective charge jump from positive infinity to negative infinity previously discovered in D=1 by Resta and Sorella is confirmed to be directly connected with the transition from the band insulator to the Mott insulating state, in agreement with recent work of Ortiz et al. In addition, symmetry is analysed, and the transition is found to be associated with a reversal of inversion symmetry in the ground state, of magnetic origin. We also study the D=1 excitation spectrum by Lanczos diagonalization and finite-size scaling. Not only the spin gap closes at the transition, consistent with the magnetic nature of the Mott state, but also the charge gap closes, so that the intermediate state between the two insulators appears to be metallic. This finding, rationalized within Hartree-Fock as due to a sign change of the effective on-site energy offset for the minority spin electrons, underlines the profound difference between the two insulators. The band-to-Mott insulator transition is also studied and found in the same model in D=2. There too we find an associated, although weaker, polarization anomaly, with some differences between square and honeycomb lattices. The honeycomb lattice, which does not possess an inversion symmetry, is used to demonstrate the possibility of an inverted piezoelectric effect in this kind of ionic Mott insulator. Received 21 May 1999  相似文献   

11.
We investigate an extended spin ladder with diagonal frustrated exchanges in a wide parameter regime. By representing the model as a sum of semidefinite positive projection operators, we prove that this model has exactly a dimer ground state. Smoothly changing parameters may lead the model cover several exactly known models. Starting from this ladder model, we proposed two two-dimensional net models with exact ground states. The quantum phase transition of the ground state, due to the change of exchange strengths along perpendicular rungs, is also discussed. Received 13 October 2002 Published online 27 January 2003 RID="a" ID="a"e-mail: schen@thphy.uni.duesseldorf.de  相似文献   

12.
An investigation of the spin excitation spectrum of charge ordered (CO) NaV2O5 is presented. We discuss several different exchange models which may be relevant for this compound, namely in-line and zig-zag chain models with weak as well as strong inter-chain coupling and also a ladder model and a CO/MV (mixed valent) model. We put special emphasis on the importance of large additional exchange across the diagonals of V-ladders and the presence of exchange anisotropies on the excitation spectrum. It is shown that the observed splitting of transverse dispersion branches may both be interpreted as anisotropy effect as well as acoustic-optic mode splitting in the weakly coupled chain models. In addition we calculate the field dependence of excitation modes in these models. Furthermore we show that for strong inter-chain coupling, as suggested by recent LDA + U results, an additional high energy optical excitation appears and the spin gap is determined by anisotropies. The most promising CO/MV model predicts a spin wave dispersion perpendicular to the chains which agrees very well with recent results obtained by inelastic neutron scattering. Received 30 April 1999 and Received in final form 5 October 1999  相似文献   

13.
We investigate under which circumstances extended Hubbard models, including bond-charge, exchange, and pair-hopping terms, are invariant under gl (2,1) superalgebra. This happens for a two-parameter Hamiltonian which includes as particular cases the t - J, the EKS and the one-parameter BGLZ Hamiltonians, all integrable in one dimension. We show that the two parameter Hamiltonian can be recasted as the sum of the BGLZ Hamiltonian plus the graded permutation operator of electronic states on neighbouring sites. The integrability of the corresponding one-dimensional model is discussed. Received: 17 February 1998 / Received in final form: 6 March 1998 / Accepted: 17 April 1998  相似文献   

14.
We have investigated the ground state phase diagram of the 1D AF spin- Heisenberg model with the staggered Dzyaloshinskii-Moriya (DM) interaction in an external uniform magnetic field H. We have used the exact diagonalization technique. In the absence of the uniform magnetic field (H=0), we have shown that the DM interaction induces a staggered chiral phase. The staggered chiral phase remains stable even in the presence of the uniform magnetic field. We have identified that the ground state phase diagram consists of four Luttinger liquid, staggered chiral, spin-flop, and ferromagnetic phases.  相似文献   

15.
We generalize the nonlinear sigma model treatment of quantum spin chains to cases including ferromagnetic bonds. When these bonds are strong enough, the classical ground state is no longer the standard Néel order and we present an extension of the known formalism to deal with this situation. We study the alternating ferromagnetic-antiferromagnetic spin chain introduced by Hida. The smooth crossover between decoupled dimers and the Haldane phase is semi-quantitatively reproduced. We study also a spin ladder with diagonal exchange couplings that interpolates between the gapped phase of the two-leg spin ladder and the Haldane phase. Here again we show that there is a good agreement between DMRG data and our analytical results. Received 6 September 1999  相似文献   

16.
We present a field-theoretic renormalization group calculation in two loop order for classical O(N)-models with an inverse square interaction in the vicinity of their lower critical dimensionality one. The magnetic susceptibility at low temperatures is shown to diverge like with a=(N-2)/(N-1) and . From a comparison with the exactly solvable Haldane-Shastry model we find that the same temperature dependence applies also to ferromagnetic quantum spin chains. Received: 20 February 1998 / Revised: 27 April 1998 / Accepted: 30 April 1998  相似文献   

17.
The importance of Hund's rule coupling for the stabilization of itinerant ferromagnetism is investigated within a two-band Hubbard model. The magnetic phase diagram is calculated by finite-temperature quantum Monte-Carlo simulations within the dynamical mean-field theory. Ferromagnetism is found in a broad range of electron fillings whereas antiferromagnetism exists only near half filling. The possibility of orbital ordering at quarter filling is also analyzed. Received: 26 February 1998 / Accepted: 17 April 1998  相似文献   

18.
We study the exact low energy spectra of the spin 1/2 Heisenberg antiferromagnet on small samples of the kagomé lattice of up to N=36 sites. In agreement with the conclusions of previous authors, we find that these low energy spectra contradict the hypothesis of Néel type long range order. Certainly, the ground state of this system is a spin liquid, but its properties are rather unusual. The magnetic () excitations are separated from the ground state by a gap. However, this gap is filled with nonmagnetic () excitations. In the thermodynamic limit the spectrum of these nonmagnetic excitations will presumably develop into a gapless continuum adjacent to the ground state. Surprisingly, the eigenstates of samples with an odd number of sites, i.e. samples with an unsaturated spin, exhibit symmetries which could support long range chiral order. We do not know if these states will be true thermodynamic states or only metastable ones. In any case, the low energy properties of the spin 1/2 Heisenberg antiferromagnet on the kagomé lattice clearly distinguish this system from either a short range RVB spin liquid or a standard chiral spin liquid. Presumably they are facets of a generically new state of frustrated two-dimensional quantum antiferromagnets. Received: 27 November 1997 / Accepted: 29 January 1998  相似文献   

19.
We investigate the FIR magneto-optical transitions in doped self-assembled InAs quantum dots with an average filling ranging from 0.6 to 6 electrons per dot. Significant changes in the magnetic field dispersion, the line-width and the amplitude of the transitions are observed as the doping level is varied, in agreement with our theoretical calculations. We show that our technique is an effective tool to obtain informations regarding the dot size homogeneity and the electron filling uniformity.Received: 22 July 2003, Published online: 2 October 2003PACS: 73.21.La Quantum dots - 78.20.Ls Magnetooptical effects - 78.30.Fs III-V and II-VI semiconductors - 78.67.Hc Quantum dotsE. Deleporte: Present address: Laboratoire de Photonique Quantique et Moleculaire, École Normale Superieure de Cachan, 94235 Cachan Cedex, FranceJ.M. Gérard: Present address: CEA-Grenoble DRFMC/SP2M/PSC, Laboratoire de Physique des semiconducteurs, 38054 Grenoble, France  相似文献   

20.
A numerical method is described for evaluating transverse spin correlations in the random phase approximation. Quantum spin-fluctuation corrections to sublattice magnetization are evaluated for the antiferromagnetic ground state of the half-filled Hubbard model in two and three dimensions in the whole U/t range. Extension to the case of defects in the AF is also discussed for spin vacancies and low-U impurities. In the limit, the vacancy-induced enhancement in the spin fluctuation correction is obtained for the spin-vacancy problem in two dimensions, for vacancy concentration up to the percolation threshold. For low-U impurities, the overall spin fluctuation correction is found to be strongly suppressed, although surprisingly spin fluctuations are locally enhanced at the low-U sites. Received 27 April 1998 and Received in final form 13 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号