首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper aims at developing an integrated design method of the active/passive hybrid type of piezoelectric damping system for reducing the dynamic response of the flexible structures due to external dynamic loads. The design method is based on the numerical optimization technique whose objective function is a control effort of the active damping. A vibration suppression performance, which is evaluated by the maximum value of the gain of the frequency response function of the structure, is constrained. In order to demonstrate the structural damping capability of the hybrid type of piezoelectric damping system designed by proposed method, numerical simulation and laboratory experiment will be done using a three-story flexible structure model equipped with 12 surface bonded PZT tiles pairs. Both numerical and experimental results indicate that the optimally designed hybrid piezoelectric damping system can be successfully achieving excellent performance as compared to a conventional purely active piezoelectric damping system.  相似文献   

2.
For the purpose of structure vibration reduction, a structural topology optimization for minimizing frequency response is proposed based on the level set method. The objective of the present study is to minimize the frequency response at the specified points or surfaces on the structure with an excitation frequency or a frequency range, subject to the given amount of the material over the admissible design domain. The sensitivity analysis with respect to the structural boundaries is carried out, while the Extended finite element method (X-FEM) is employed for solving the state equation and the adjoint equation. The optimal structure with smooth boundaries is obtained by the level set evolution with advection velocity, derived from the sensitivity analysis and the optimization algorithm. A number of numerical examples, in the frameworks of two-dimension (2D) and three-dimension (3D), are presented to demonstrate the feasibility and effectiveness of the proposed approach.  相似文献   

3.
Patil A  Rastogi P 《Optics letters》2005,30(17):2227-2229
A maximum-likelihood (ML) method based on spectral estimation theory for the extraction of dual phase distributions in holographic moire in the presence of nonsinusoidal waveforms, noise, and the miscalibration of piezoelectric (PZT) devices is proposed. The extraction of these phases requires incorporating two PZTs into the moire setup. ML estimators are asymptotically efficient for sufficient data samples. The approach presented uses a direct stochastic algorithm called probabilistic global search Lausanne for minimizing the ML function.  相似文献   

4.
An optimal design of a hybrid vibration absorber (HVA) with a displacement and a velocity feedback for minimizing the velocity response of the structure based on the H(2) optimization criterion is proposed. The objective of the optimal design is to reduce the total vibration energy of the vibrating structure under wideband excitation, i.e., the total area under the velocity response spectrum is minimized in this criterion. One of the inherent limitations of the traditional passive vibration absorber is that its vibration suppression is low if the mass ratio between the absorber mass and the mass of the primary structure is low. The active element of the proposed HVA helps further reduce the vibration of the controlled structure, and it can provide very good vibration absorption performance even at a low mass ratio. Both the passive and active elements are optimized together for the minimization of the mean square velocity of the primary system as well as the active force required in the HVA. The proposed HVA was tested on single degree-of-freedom (SDOF) and continuous vibrating structures and compared to the traditional passive vibration absorber.  相似文献   

5.
Langoju R  Patil A  Rastogi P 《Optics letters》2006,31(13):1982-1984
We propose a new approach for estimating the phase in the presence of a nonlinear response of a phase-shifting device: a piezoelectric transducer (PZT). The method is complemented well by the high resolution and the maximum likelihood estimation techniques in the estimation of the phase step and the nonlinear coefficient. The advantage of the proposed method is that it can be extended to the extraction of multiple phases in configurations involving multiple PZTs in the presence of nonlinearity. Symmetricity in the phase steps is not required in this method. Hence hysteresis of the PZT does not have any influence on the accuracy of the phase estimation. The effectiveness of the method is shown by experimental results.  相似文献   

6.
A recently reported design of a hybrid vibration absorber (HVA) which is optimized to suppress resonant vibration of a single degree-of-freedom (SDOF) system is re-optimized for suppressing wide frequency band vibration of the SDOF system under stationary random force excitation. The proposed HVA makes use of the feedback signals from the displacement and velocity of the absorber mass for minimizing the vibration response of the dynamic structure based on the H2 optimization criterion. The objective of the optimal design is to minimize the mean square vibration amplitude of a dynamic structure under a wideband excitation, i.e., the total area under the vibration response spectrum is minimized in this criterion. One of the inherent limitations of the traditional passive vibration absorber is that its vibration suppression is low if the mass ratio between the absorber mass and the mass of the primary structure is low. The active element of the proposed HVA helps further reduce the vibration of the controlled structure and it can provide significant vibration absorption performance even at a low mass ratio. Both the passive and active elements are optimized together for the minimization of the mean square vibration amplitude of the primary system. The proposed HVA are tested on a SDOF system and continuous vibrating structures with comparisons to the traditional passive vibration absorber.  相似文献   

7.
This paper discusses a structural optimization method that optimizes shape and topology based on the phase field method. The proposed method has the same functional capabilities as a structural optimization method based on the level set method incorporating perimeter control functions. The advantage of the method is the simplicity of computation, since extra operations such as re-initialization of functions are not required. Structural shapes are represented by the phase field function defined in the design domain, and optimization of this function is performed by solving a time-dependent reaction diffusion equation. The artificial double well potential function used in the equation is derived from sensitivity analysis. The proposed method is applied to two-dimensional linear elastic and vibration optimization problems such as the minimum compliance problem, a compliant mechanism design problem and the eigenfrequency maximization problem. The numerical examples provided illustrate the convergence of the various objective functions and the effect that perimeter control has on the optimal configurations.  相似文献   

8.
Patil A  Langoju R  Rastogi P 《Optics letters》2005,30(21):2870-2872
A state space model for the determination of dual phase distributions in a holographic moiré in the presence of nonsinusoidal waveforms, random noise, and miscalibration of the piezoelectric (PZT) devices is proposed. The extraction of these phase terms requires incorporating two PZTs into the moiré setup. A Toeplitz approximation method (TAM) is applied for phase determination, and modification to the Toeplitz covariance matrix formed from the phase-shifted moiré fringes by application of a denoising step in the state-feedback matrix is proposed. This step ensures that the phase terms can even be estimated at a signal-to-noise ratio much lower than that of the original TAM or by our previously suggested polynomial based method.  相似文献   

9.
Over the past three decades, a wide variety of active control methods have been proposed for controlling problematic vibration. The vast majority of approaches make the implicit assumption that sensors or actuators can be located in the region where vibration attenuation is required. However this is either not feasible or prohibitively expensive for many large scale structures or where the system environment is harsh. As a result, optimal control of local vibration may lead to enhancement at remote locations. Controlling remote vibration using only local sensing and actuation is an important concept to resolve this remote vibration control problem. Recently, a geometric methodology that provides an approach for defining the design freedom available for reducing vibrations at both local and remote locations has been proposed by the authors. In an earlier paper, the fundamental results were used to develop design procedures for discrete frequency control; in the current paper, however, the focus is on design procedures for broad band control. A systematic approach is developed that provides an additional design constraint to the geometric methodology to ensure that the resulting compensator provides closed loop stability. The design procedure is illustrated through its application to an active vibration isolation structure.  相似文献   

10.
We propose a new method for the accurate estimation of nonlinear response of the PZT to the applied voltage. The method uses discrete chirp Fourier transform for the coarse estimation followed by a fine search method for the accurate estimation of the phase step and nonlinearity. The method can be extended to the cases of extraction of multiple phases in the configurations involving multiple PZTs such as holographic moiré in the presence of nonlinearity. The robustness of the proposed method is verified by comparing with Cramér-Rao lower bound. Experimental results prove the method’s feasibility.  相似文献   

11.
大长宽比长条形SiC反射镜的优化设计与试验   总被引:1,自引:0,他引:1  
针对某离轴三反光学系统中的大长宽比长条形SiC反射镜镜面边缘随机振动加速度响应均方根值过大的特点,提出一种采用"基结构法"的反射镜结构拓扑优化方法,以随机振动加速度响应均方根值最小化为优化目标.首先对某初始反射镜结构进行有限元分析,发现反射镜镜面边缘点Z向加速度响应均方根值过大.其次,应用连续体结构拓扑优化思想,以反射镜镜面边缘点的随机振动加速度响应均方根值作为优化目标,以镜面峰谷值、镜体一阶约束频率作为约束条件,以反射镜筋板式基结构作为优化空间,对反射镜镜体结构进行拓扑优化设计,得到了一种各项力学性能指标及面形精度均满足指标要求的反射镜轻量化结构.最后,通过有限元分析与振动试验,验证了本文设计的反射镜结构拥有良好的力学性能,其中反射镜镜体质量相比优化前降低了13%,镜面边缘点的Z向随机振动加速度响应均方根值降低了58%,证明了本文优化方法的有效性.  相似文献   

12.
一种强噪声背景下微弱超声信号提取方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王大为  王召巴 《物理学报》2018,67(21):210501-210501
为解决在强噪声背景下获取超声信号的难题,基于粒子群优化算法和稀疏分解理论提出一种强噪声背景下微弱超声信号提取方法.该方法将降噪问题转换为在无穷大参数集上对函数进行优化的问题,首先以稀疏分解理论和超声信号的结构特点为依据构建了粒子群优化算法运行所需要的目标函数及去噪后信号的重构函数,从而将粒子群优化算法和超声信号降噪联系在一起;然后根据粒子群优化算法可以在连续参数空间寻优的特点建立了用于匹配超声信号的连续超完备字典,并采用改进的自适应粒子群优化算法在该字典中对目标函数进行优化;最后根据对目标函数在字典上的优化结果确定最优原子,并利用最优原子按照重构函数重构出降噪后的超声信号.通过对仿真超声信号和实测超声信号的处理,结果表明本文提出的方法可以有效提取信噪比低至-4 dB的强噪声背景下的微弱超声信号,且和基于自适应阈值的小波方法相比本文方法表现出更好的降噪性能.  相似文献   

13.
This paper investigates vibration characteristics of footbridge induced by crowd random walking, and presents the application of multiple tuned mass dampers (MTMD) in suppressing crowd-induced vibration. A single foot force model for the vertical component of walking-induced force is developed, avoiding the phase angle inaccessibility of the continuous walking force. Based on the single foot force model, the crowd-footbridge random vibration model, in which pedestrians are modeled as a crowd flow characterized with the average time headway, is developed to consider the worst vibration state of footbridge. In this random vibration model, an analytic formulation is developed to calculate the acceleration power spectral density in arbitrary position of footbridge with arbitrary span layout. Resonant effect is observed as the footbridge natural frequencies fall within the frequency bandwidth of crowd excitation. To suppress the excessive acceleration for human normal walking comfort, a MTMD system is used to improve the footbridge dynamic characteristics. According to the random vibration model, an optimization procedure, based on the minimization of maximum root-mean-square (rms) acceleration of footbridge, is introduced to determine the optimal design parameters of MTMD system. Numerical analysis shows that the proposed MTMD designed by random optimization procedure, is more effective than traditional MTMD design methodology in reducing dynamic response during crowd-footbridge resonance, and that the proper frequency spacing enlargement will effectively reduce the off-tuning effect of MTMD.  相似文献   

14.
张瑶  汤善治  李明  王立超  高俊祥 《物理学报》2016,65(1):10702-010702
反射镜是同步辐射光束线中应用广泛的光学元件之一,双压电片反射镜由于具有结构简单、面形能动以及自适应可调等优点,逐渐引起同步辐射界的重视.本文综述了同步辐射中双压电片反射镜的研究现状.主要讨论了双压电片反射镜的工作原理和研究概况,包括在几个大型同步辐射装置中的结构特点、制备技术及面形校正结果等;简要介绍了双压电片反射镜面形校正时所采用的反射波前探测技术和反馈控制算法;最后总结了其发展中存在的关键问题,并展望了其未来的发展方向.  相似文献   

15.
Polymer/lead zirconate titanate {[Pb(Zrx, Ti1-x)O3], PZT, x = 0.40} flexible composite films are prepared by solvent evaporation technique. Carbon tape used as a top and bottom electrodes for fabricating flexible PZT composite films. The phase purity and functional groups of PZT and polymer humps are confirmed by XRD and FTIR respectively. XPS analysis showed that PMMA contains carbon (C) and oxygen (O). Carbon (C), oxygen (O), lead (Pb), zirconium (Zr) and titanium (Ti) are present in PZT/PMMA composite films. The chemical states of Pb, Zr and Ti ions are 2+, 4+ and 4+ respectively confirmed by XPS. The higher forefinger bending motion of the film is found to reveal greater output voltage (5.2 V) than the output voltage (1.6 V) for slight bending motion of the forefinger. Therefore, based on the results human mechanical forces induce compressive stress on PZTs ferroelectric based composite films and are excellent candidate for energy harvester.  相似文献   

16.
Phase-shifting interferometers with three piezoelectric transducers (PZTs) on their phase-shifting adapter (PSA) are widely used in precision measurement. The guarantee of the PSA to stretch as a flat is very important to the accuracy of the measurement. In this paper, we propose a systematic self-calibration method to calibrate the different displacements of the PZTs so that the PSA can be moved evenly as a flat. The proposed method uses only the interference patterns to calibrate the three PZTs and information about the exact position of the PZTs and the instrument parameters of the interferometer are not required. Experimental results show that, after calibration by the proposed method, the deviation of the measured phase shift error could be reduced about 43.1 times from 3.492 to 0.081°.  相似文献   

17.
Semi-active vibration control based on magnetorheological (MR) materials offers excellent potential for high bandwidth control through rapid variations in the rheological properties of the fluid under varying magnetic field. Such fluids may be conveniently applied to partial or more critical components of a large structure to realize more efficient and compact vibration control mechanism with variable damping. This study investigates the properties and vibration responses of a partially treated multi-layer MR fluid beam. The governing equations of a partially treated multi-layered MR beam are formulated using finite element method and Ritz formulation. The validity of the proposed finite element formulations is demonstrated by comparing the results with those obtained from the Ritz formulation and the experimental measurements. The properties of different configurations of a partially treated MR-fluid beam are evaluated to investigate the influences of the location and length of the MR-fluid for different boundary conditions. The properties in terms of natural frequencies and loss factors corresponding to various modes are evaluated under different magnetic field intensities and compared with those of the fully treated beams. The effect of location of the fluid treatment on deflection mode shapes is also investigated. The forced vibration responses of the various configurations of partially treated MR sandwich beam are also evaluated under harmonic force excitations. The results suggest that the natural frequencies and transverse displacement response of the partially treated MR beams are strongly influenced not only by the intensity of the applied magnetic field, but also by the location and the length of the fluid pocket. The application of partial treatment could also alter the deflection pattern of the beam, particularly the location of the peak deflection.  相似文献   

18.
基于IAGA的空间测量定位系统测站优化部署   总被引:1,自引:0,他引:1       下载免费PDF全文
熊芝  岳翀  薛彬 《应用光学》2016,37(4):561-566
空间测量定位系统是一种基于光电扫描的角度交汇测量系统,由于该系统是在多测站协同作用下实现坐标测量,因此测站的布局优化是应用时面临的重要问题。为了解决该问题,提出了一种基于改进自适应遗传算法的测站优化部署方案。以系统定位精度、覆盖度和使用成本作为多目标优化函数;将进化代数衰减因子与自适应遗传算法相结合,根据多目标函数建立改进自适应遗传算法优化流程;对2~4个测站进行仿真优化分析。仿真结果表明,与传统自适应遗传算法相比,该方法能在10~20代内收敛到最优解并获得更优的目标函数值。因此该方法在空间布局优化设计中能有效提高系统的测量性能。  相似文献   

19.
In this study, the active vibration control and configurational optimization of a cylindrical shell are analyzed by using piezoelectric transducers. The piezoelectric patches are attached to the surface of the cylindrical shell. The Rayleigh–Ritz method is used for deriving dynamic modeling of cylindrical shell and piezoelectric sensors and actuators based on the Donnel–Mushtari shell theory. The major goal of this study is to find the optimal locations and orientations of piezoelectric sensors and actuators on the cylindrical shell. The optimization procedure is designed based on desired controllability and observability of each contributed and undesired mode. Further, in order to limit spillover effects, the residual modes are taken into consideration. The optimization variables are the positions and orientations of piezoelectric patches. Genetic algorithm is utilized to evaluate the optimal configurations. In this article, for improving the maximum power and capacity of actuators for amplitude depreciation of negative velocity feedback strategy, we have proposed a new control strategy, called “Saturated Negative Velocity Feedback Rule (SNVF)”. The numerical results show that the optimization procedure is effective for vibration reduction, and specifically, by locating actuators and sensors in their optimal locations and orientations, the vibrations of cylindrical shell are suppressed more quickly.  相似文献   

20.
Microvibrations, at frequencies between 1 and 1000 Hz, generated by on board equipment, can propagate throughout a spacecraft structure and affect the performance of sensitive payloads. To investigate strategies to reduce these dynamic disturbances by means of active control systems, realistic yet simple structural models are necessary to represent the dynamics of the electromechanical system. In this paper a modeling technique which meets this requirement is presented, and the resulting mathematical model is used to develop some initial results on active control strategies. Attention is focused on a mass loaded panel subjected to point excitation sources, the objective being to minimize the displacement at an arbitrary output location. Piezoelectric patches acting as sensors and actuators are employed. The equations of motion are derived by using Lagrange's equation with vibration mode shapes as the Ritz functions. The number of sensors/actuators and their location is variable. The set of equations obtained is then transformed into state variables and some initial controller design studies are undertaken. These are based on standard linear systems optimal control theory where the resulting controller is implemented by a state observer. It is demonstrated that the proposed modeling technique is a feasible realistic basis for in-depth controller design/evaluation studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号