首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In this note we present the development of a dual-probe laser interferometer that uses the filtering properties of a polarized beamsplitter to enable two independent (uncoupled) detection probes. The robustness of this system is demonstrated by making broadband, noncontact, high fidelity measurements of Lamb waves in an aluminum plate.  相似文献   

2.
Most structural dynamic systems are of high order; however, they often exhibit phenomena that can be dealt with effectively using low order models. This paper presents a method for describing certain kinds of damage evolution in mechanical systems. The method relies on a simple principle that as damage evolves in a structural dynamic system, the damage indicator (i.e., diagnostic feature) behaves like a stable quasi-stationary equilibrium point in a subsidiary non-linear bifurcating system within the so-called damage center manifold. It is shown that just as linear normal modes govern the behavior of linear structures with idealized damping, so too do non-linear normal forms govern the evolution of damage within structures in many instances. The method is justified with citations from the literature on certain types of mechanical failure and then applied in an experimental case involving reversible damage in a bolted fastener. Off-line experiments on a rotorcraft fuselage show that the evolution of damage is sensitive to both temporal and spatial bifurcation parameters. A diagnostic sensing strategy whereby output-only transmissibility features are used to decrease the order of high order structural dynamic measurements is also described.  相似文献   

3.
The application of temperature compensation strategies is important when using a guided wave structural health monitoring system. It has been shown by different authors that the influence of changing environmental and operational conditions, especially temperature, limits performance. This paper quantitatively describes two different methods to compensate for the temperature effect, namely optimal baseline selection (OBS) and baseline signal stretch (BSS). The effect of temperature separation between baseline time-traces in OBS and the parameters used in the BSS method are investigated. A combined strategy that uses both OBS and BSS is considered. Theoretical results are compared, using data from two independent long-term experiments, which use predominantly A0 mode and S0 mode data respectively. These confirm that the performance of OBS and BSS quantitatively agrees with predictions and also demonstrate that the combination of OBS and BSS is a robust practical solution to temperature compensation.  相似文献   

4.
In Structural Health Monitoring (SHM) of materials, estimating the effects of environmental and operational conditions such as temperature is important. Indeed, temperature changes induce modifications of the mechanical properties of the material and therefore cause a dilation of the acoustic signals characterized by a scale factor. This paper described four scale factor estimators able to monitor changes in temperature: The short-time cross-correlation (STXC) method, the stretching method (STRE), the Minimum Variance Based Estimator method (MVBE) and the Scale Transform Based Estimator method (STBE). The first two methods have already been assessed in the literature while the latter two have been specifically developed for this study. First, closed-form for the Cramer-Rao bound on the estimates of the scale factor, from a simplified deterministic signal, are derived and simplified expressions are given. Then, a statistical evaluation of the quality of estimates is conducted through Monte-Carlo simulations using synthetic signals, based on a model taking into account the influence of temperature. A raw estimate of the computational complexity of signal processing methods also completes this evaluation phase. Finally, the experimental validation of estimation methods is conducted on an aluminum plate subjected to temperatures variations in a controlled thermal environment. The temperature estimates are then faced with an analytical model describing the material behavior.  相似文献   

5.
A method based on data dependent system (DDS) for extraction of phase in fiber modal interference is presented. The interference patterns of LP01 & LP11, LP01 & LP02 and LP06 &LP07 within the fiber have been recorded under different launching conditions. The patterns were characterized by means of autoregressive model and the self coherence functions of the corresponding interferogram were determined. It would provide the phase distribution of the pattern and the modulation of group delay due to the measurand. An application has been made for measuring strain in a simply supported beam under different loading conditions. Results are presented for the applied strain in the range of 270-1500 μ strain.  相似文献   

6.
A statistical pattern recognition based damage detection algorithm is proposed. The algorithm is developed according to the training and testing scheme, typical of pattern recognition applications. The original contribution of the work is given by the use of an adaptation of Mel-Frequency Cepstral Coefficients as damage sensitive features, as their compactness and de-correlation characteristics make them particularly suited for statistical pattern recognition applications. At the same time, the ease of extraction, which requires minimal user expertise, represents an important advantage over other more popular features, and makes the cepstral features particularly convenient for implementation into automatic structural health monitoring routines. The damage detection algorithm employs the squared Mahalanobis distance to solve the Structural Health Monitoring assignment. The method is validated by using both simulated and experimental data, and the performance of said features is compared to that of Auto-Regressive (AR) coefficients, which have been largely used to solve the task of structural damage detection. The experimental data were measured on a steel frame, which behave nonlinearly in its damaged configuration, at the Los Alamos National Laboratory. Results demonstrate that the proposed approach may be conveniently used in real-life applications, since cepstral features outperform AR coefficients when dealing with experimental data modeled to mimic the operational and environmental variability.  相似文献   

7.
应用概率成像方法对兰姆波结构健康监测中板的损伤进行识别。根据兰姆波损伤散射信号的传播时间以及传感器网络中一对发射-接收传感器的空间位置来确定一个椭圆轨迹,该轨迹显示了损伤可能出现的位置。将监测区域均匀网格化,计算各网格节点到椭圆轨迹的最短距离,将此距离映射为损伤出现的概率。采用灰度等级对所有网格节点处的概率值进行量化,则由每一个发射接收传感器对就确定了一个灰度图像。为了突出损伤,应用图像融合技术对传感器网络中所有发射接收传感器对所构成的灰度图像进行融合。对铝板中横穿孔损伤的实验结果显示了该方法能够有效地确定损伤的位置和范围,有助于推动兰姆波结构健康监测的实用化。  相似文献   

8.
In this paper, the authors present a formal classification routine to characterize flaw severity in an aircraft-grade aluminum plate using Lamb waves. A rounded rectangle flat-bottom hole is incrementally introduced into the plate, and at each depth multi-mode Lamb wave signals are collected to study the changes in received signal due to mode conversion and scattering from the flaw. Lamb wave tomography reconstructions are used to locate and size the flaw at each depth, however information about the severity of the flaw is obscured when the flaw becomes severe enough that scattering effects dominate. The dynamic wavelet fingerprint is then used to extract features from the raw Lamb wave signals, and supervised pattern classification techniques are used to identify flaw severity with up to 80.7% accuracy for a training set and up to 51.7% accuracy on a series of validation data sets extracted from independent plate samples.  相似文献   

9.
10.
A novel fiber Bragg grating (FBG) sensor system for measurement of strain and temperature is proposed in this paper. The proposed sensor technique is based on time-division multiplexing (TDM). A semiconductor optical amplifier (SOA), connected in a ring cavity, is used to serve as a gain medium and switch. The SOA is driven by a pulse generator, which operates the SOA at different periods of time to select reflected pulses from a particular sensor. The FBG sensors have identical center wavelengths and can be deployed along the same fiber. This technique relieves the spectral bandwidth issue and permits the interrogation of up to 100 FBGs along a fiber, if the reflectivity of the individual sensors is sufficiently low to avoid shadowing effects. This system is particularly suitable for the application in structural health monitoring (SHM) where large numbers of sensors are required in wide measurement ranges.  相似文献   

11.
There is a need to better understand the effect of temperature changes on the response of ultrasonic guided-wave pitch-catch systems used for structural health monitoring. A model is proposed to account for all relevant temperature-dependent parameters of a pitch-catch system on an isotropic plate, including the actuator-plate and plate-sensor interactions through shear-lag behavior, the piezoelectric and dielectric permittivity properties of the transducers, and the Lamb wave dispersion properties of the substrate plate. The model is used to predict the S(0) and A(0) response spectra in aluminum plates for the temperature range of -40-+60 degrees C, which accounts for normal aircraft operations. The transducers examined are monolithic PZT-5A [PZT denotes Pb(Zr-Ti)O3] patches and flexible macrofiber composite type P1 patches. The study shows substantial changes in Lamb wave amplitude response caused solely by temperature excursions. It is also shown that, for the transducers considered, the response amplitude changes follow two opposite trends below and above ambient temperature (20 degrees C), respectively. These results can provide a basis for the compensation of temperature effects in guided-wave damage detection systems.  相似文献   

12.
In this paper we describe how the equations of relativistic fluid dynamics can be solved numerically using the particle method SPH.  相似文献   

13.
A field demonstration of a new and hybrid wireless sensing network paradigm for structural health monitoring (SHM) is presented. In this paradigm, both power and data interrogation commands are conveyed via a mobile agent that is sent to each sensor node to perform individual interrogations, which can alleviate several limitations of traditional sensing networks. This paper will discuss such prototype systems, which will be used to interrogate capacitive-based and impedance-based sensors for SHM applications. The capacitive-based wireless sensor node is specifically built to collect peak displacement measurements. In addition, a wireless sensor node for collecting electromechanical impedance data has also been developed. Both sensor nodes are specifically designed to accept various power sources and to be wirelessly triggered on an as-needed basis so that they can be used for the hybrid sensing network approach. The capabilities of these miniaturized and portable devices are demonstrated in the laboratory and the field, which was performed at the Alamosa Canyon Bridge in southern New Mexico.  相似文献   

14.
A model of a one-dimensional cracked cantilever bar subjected to longitudinal harmonic excitation is used to analyse a nonlinear response as a way to monitor structural health. The effect of the bilinear (nonlinear) character of the crack on the dynamics of the structure is studied. Simulation and experiments were performed to analyse the nonlinear behaviour of the cracked bar. In simulation the nonlinear information is obtained based on a combination of the analytical technique and the Matlab–Simulink computation. From analysis and experiment, it is found that the crack-induced nonlinearity leads to the generation of higher harmonics, whose intensity is a function of a distance from the crack. Side band frequencies were clearly revealed as well. The latter indicate modulation of exciting frequency due to systematic interaction of crack faces. The nonlinear transformation of modulated vibration by crack leads to generation of a low frequency periodic component. Its intensity is proportional to the forced response of the cracked bar at the exciting frequency. The phenomenology revealed can be effective for Structural Health Monitoring.  相似文献   

15.
Previous studies have used the cross-correlation of ambient vibrations (CAV) technique to estimate the impulse response (or Green's function) between passive sensors for passive imaging purposes in various engineering applications. The technique (CAV) relies on extracting deterministic coherent time signatures from the noise cross-correlation function computed between passive sensors, without the use of controlled active sources. Provided that the ambient structure-borne noise field remains stable, these resulting coherent waveforms obtained from CAV can then be used for structural monitoring even if they differ from the actual impulse response between the passive sensors. This article presents experimental CAV results using low-frequency random vibration data (<50 Hz) collected on an all-aluminum naval vessel (the HSV-2 Swift) operating at high speed (up to 40 knots) during high sea states. The primary excitation sources were strong wave impact loadings and rotating machinery vibrations. The consistency of the CAV results is established by extracting similar coherent arrivals from ambient vibrations between the pairs of strain gages, symmetrically located across the ship's centerline. The influence of the ship's operating conditions on the stability of the peak coherent arrival time, during the 7 days trial, is also discussed.  相似文献   

16.
多种群精英共享遗传算法在异常光谱识别中的应用   总被引:1,自引:0,他引:1  
提出了一种基于多种群精英共享遗传算法的异常光谱识别方法.该方法应用于红外光谱数据的分析,并在删除异常光谱样本后使用偏最小二乘方法进行建模.与使用蒙特卡洛交叉验证、留一交叉检验、马氏距离以及传统遗传算法进行异常光谱识别的方法相比,所提方法将水分预测模型的预测误差平方和(PRESS)分别降低了72.4%,39.5%,39.5%和14.5%;将脂肪含量的预测模型的PRESS值分别降低了86.2,75.9%,84.9%和19.9%;将蛋白质含量的预测模型的PRESS值分别降低了56.5%,35.7%,35.7%和18.2%.实验表明,所提方法不仅能适应不同成分光谱数据的异常识别,而且删除异常光谱数据后所建立的模型具有较高的预测能力和较好的稳健性.  相似文献   

17.
Lu Y  Michaels JE 《Ultrasonics》2005,43(9):717-731
Diffuse ultrasonic waves for structural health monitoring offer the advantages of simplicity of signal generation and reception, sensitivity to damage, and large area coverage; however, there are the serious disadvantages of no accepted methodology for analyzing the complex recorded signals and sensitivity to environmental changes such as temperature and surface conditions. Presented here is a methodology for applying diffuse ultrasonic waves to the problem of detecting structural damage in the presence of unmeasured temperature changes. This methodology is based upon the prediction and observation that the first order effect of a temperature change on a diffuse ultrasonic wave is a time dilation or compression. A multi-step procedure is implemented to (1) record a set of baseline waveforms from the undamaged specimen at temperatures spanning the expected operating range, (2) select a waveform from the baseline set whose temperature is the closest to that of a subsequently measured signal, (3) adjust this baseline waveform to best match the signal, and (4) calculate an error parameter between the signal and the adjusted waveform and compare this parameter to a threshold to determine the structural status. This procedure is applied to experimental data from aluminum plate specimens with artificial flaws. Probability of detection and the minimum flaw size detected are presented as a function of the size of the baseline waveform set. It is shown that a probability of detection of over 95% can be achieved with a small number of baseline waveforms.  相似文献   

18.
It is commonly known that an accurate analysis of a large structure requires an accurate analytical model. This is also true for the inverse analysis of a structural system where measured structural responses are used as input to assess the structural conditions. However, an accurate model of the structure is always not available in practice. Two substructural identification methods are presented in this paper with the structure divided into substructures and with one substructure assessed at one time. In the first method, an accurate finite element model of the whole structure is assumed known. A state space method is applied to identify the external forces acting on the structure, and a damage identification method is then applied to identify the local damages using time domain information. Iterative model updating method based on the measured acceleration in the selected substructure is employed for the assessment. The second identification method requires only the finite element model of the substructure. The interface forces and the external forces acting on the target substructure are all taken as excitations and they are identified in state space. The substructure is then assessed similar to the first method. Since the target substructure for updating consists of a much reduced number of components and the identification problem is more efficient. The validation of the proposed methods is demonstrated by a truss structure with polluted measured accelerations with promising results.  相似文献   

19.
20.
It has been demonstrated theoretically and experimentally that an estimate of the impulse response (or Green's function) between two receivers can be obtained from the cross correlation of diffuse wave fields at these two receivers in various environments and frequency ranges: ultrasonics, civil engineering, underwater acoustics, and seismology. This result provides a means for structural monitoring using ambient structure-borne noise only, without the use of active sources. This paper presents experimental results obtained from flow-induced random vibration data recorded by pairs of accelerometers mounted within a flat plate or hydrofoil in the test section of the U.S. Navy's William B. Morgan Large Cavitation Channel. The experiments were conducted at high Reynolds number (Re > 50 million) with the primary excitation source being turbulent boundary layer pressure fluctuations on the upper and lower surfaces of the plate or foil. Identical deterministic time signatures emerge from the noise cross-correlation function computed via robust and simple processing of noise measured on different days by a pair of passive sensors. These time signatures are used to determine and/or monitor the structural response of the test models from a few hundred to a few thousand Hertz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号