首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The vertical vibration of suspension bridges with a damage in the main cables is studied using a continuum formulation. Starting from a model for damaged suspended cables recently proposed in the literature, an improved expression for the dynamic increment of cable tension is derived. The nonlinear equation of motion of the damaged bridge is obtained by extending this model to include the stiffening girder. The linear undamped modal eigenproperties are then extracted, in closed-form, from the linearized equation of motion, thus generalizing to the presence of an arbitrary damage the expressions known from the literature for undamaged suspension bridges. The linear dynamics of the damaged bridge reveals to be completely described by means of the same two non-dimensional parameters that govern the linear dynamics of undamaged bridges and which account for the mechanical characteristics of both the main cable and the girder, with the addition of three non-dimensional parameters characterizing damage intensity, position and extent. After presenting the mathematical formulation, a parametric analysis is conducted with the purpose of investigating the sensitivity of natural frequencies and mode shapes to damage, which, in fact, is a crucial point concerning damage detection applications using inverse methods. All through the paper, systematic comparisons with finite element simulations are presented for the purpose of model validation.  相似文献   

2.
A separable form of the equations of motion for a cylindrical anisotropic elastic waveguide of arbitrary cross-section is derived. From these the orthogonality relation for the modes of harmonic wave propagation in the waveguide is readily derived.  相似文献   

3.
4.
5.
The governing differential equations for the coupled bending-bending vibration of a rotating beam with a tip mass, arbitrary pretwist, an elastically restrained root, and rotating at a constant angular velocity, are derived by using Hamilton's principle. The frequency equation of the system is derived and expressed in terms of the transition matrix of the transformed vector characteristic governing equation. The influence of the tip mass, the rotary inertia of the tip mass, the rotating speed, the geometric parameter of the cross-section of the beam, the setting angle, and the pretwist parameters on the natural frequencies are investigated. The difference between the effects of the setting angle on the natural frequencies of pretwisted and unpretwisted beams is revealed.  相似文献   

6.
This paper presents space-time numerical simulation and validation of analytical predictions for the finite-amplitude forced dynamics of suspended cables. The main goal is to complement analytical and numerical solutions, accomplishing overall quantitative/qualitative comparisons of nonlinear response characteristics. By relying on an approximate, kinematically non-condensed, planar modeling, a simply supported horizontal cable subject to a primary external resonance and a 1:1, or 1:1 vs. 2:1, internal resonance is analyzed. To obtain analytical solution, a second-order multiple scales approach is applied to a complete eigenfunction-based series of nonlinear ordinary-differential equations of cable damped forced motion. Accounting for both quadratic/cubic geometric nonlinearities and multiple modal contributions, local scenarios of cable uncoupled/coupled responses and associated stability are predicted, based on chosen reduced-order models. As a cross-checking tool, numerical simulation of the associated nonlinear partial-differential equations describing the dynamics of the actual infinite-dimensional system is carried out using a finite difference technique employing a hybrid explicit-implicit integration scheme. Based on system control parameters and initial conditions, cable amplitude, displacement and tension responses are numerically assessed, thoroughly validating the analytically predicted solutions as regards the actual existence, the meaningful role and the predominating internal resonance of coexisting/competing dynamics. Some methodological aspects are noticed, along with a discussion on the kinematically approximate versus exact, as well as planar versus non-planar, cable modeling.  相似文献   

7.
The field equations of general relativity are solved to post-Newtonian order for a frame of reference having an arbitrary time-dependent, translational acceleration and an arbitrary time-dependent angular velocity. The derivation is based on a new 3+1 decomposition of the Einstein field equations and geodesic equation of motion. The resulting space-time metric and equation of motion contain gravitational terms, inertial terms, and coupled gravitational-inertial terms. These effects are expressed explicitly in terms of the Newtonian potential and standard post-Newtonian scalar and vector potentials. The physical meaning of the formulas derived is illustrated by application to a system of point-like gravitating masses. These results should be useful for the investigation of general relativistic effects in the analysis of real experimental measurements made with respect to a noninertial frame of reference, such as the surface of the rotating earth or an accelerated spacecraft.  相似文献   

8.
A one-dimensional theory is developed for coupled torsional-flexural waves in thin-walled elastic beams of arbitrary open cross-section. Complex kinematical effects are fully taken into account with an emphasis on consistency. Exact equations of motion are obtained in terms of generalized stresses and generalized displacements defined by an averaging procedure. Constitutive relations accounting for flexural-torsional couplings are proposed. They include and generalize the static laws of strength of materials. General features of the dispersion are analyzed. This theory is applied to the case of a standard angle-section of which the dispersion curves are given.  相似文献   

9.
Based on a novel extended version of the Lagrange equations for systems containing non-material volumes, the nonlinear equations of motion for cantilever pipe systems conveying fluid are deduced. An alternative to existing methods utilizing Newtonian balance equations or Hamilton's principle is thus provided. The application of the extended Lagrange equations in combination with a Ritz method directly results in a set of nonlinear ordinary differential equations of motion, as opposed to the methods of derivation previously published, which result in partial differential equations. The pipe is modeled as a Euler elastica, where large deflections are considered without order-of-magnitude assumptions. For the equations of motion, a dimensional reduction with arbitrary order of approximation is introduced afterwards and compared with existing lower-order formulations from the literature. The effects of nonlinearities in the equations of motion are studied numerically. The numerical solutions of the extended Lagrange equations of the cantilever pipe system are compared with a second approach based on discrete masses and modeled in the framework of the multibody software HOTINT/MBS. Instability phenomena for an increasing number of discrete masses are presented and convergence towards the solution for pipes conveying fluid is shown.  相似文献   

10.
For the spatially coupled free vibration analysis of thin-walled composite I-beam with symmetric and arbitrary laminations, the exact dynamic stiffness matrix based on the solution of the simultaneous ordinary differential equations is presented. For this, a general theory for the vibration analysis of composite beam with arbitrary lamination including the restrained warping torsion is developed by introducing Vlasov's assumption. Next, the equations of motion and force–displacement relationships are derived from the energy principle and the first order of transformed simultaneous differential equations are constructed by using the displacement state vector consisting of 14 displacement parameters. Then explicit expressions for displacement parameters are derived and the exact dynamic stiffness matrix is determined using force–displacement relationships. In addition, the finite-element (FE) procedure based on Hermitian interpolation polynomials is developed. To verify the validity and the accuracy of this study, the numerical solutions are presented and compared with analytical solutions, the results from available references and the FE analysis using the thin-walled Hermitian beam elements. Particular emphasis is given in showing the phenomenon of vibrational mode change, the effects of increase of the modulus and the bending–twisting coupling stiffness for beams with various boundary conditions.  相似文献   

11.
In the present study, the nonlinear response of a shallow suspended cable with multiple internal resonances to the primary resonance excitation is investigated. The method of multiple scales is applied directly to the nonlinear equations of motion and associated boundary conditions to obtain the modulation equations and approximate solutions of the cable. Frequency–response curves and force–response curves are used to study the equilibrium solution and its stability. The effects of the excitation amplitude on the frequency–response curves of the cable are also analyzed. Moreover, the chaotic dynamics of the shallow suspended cable is investigated by means of numerical simulations.  相似文献   

12.
The mechanical behaviour of suspension bridges is characterised by nonlinearities due to the main cables geometric effects and to the inability of the hangers to sustain compressive loads. The nonlinear effects due to hanger slackening are expected to increase in suspension footbridges due to lightweight decks, that is, low dead to live load ratio, and to shallow plate-girder decks with very low flexural and torsional stiffness. In this paper a new section model is proposed to study the limit of hanger linearity in lightweight suspension footbridges. The model is inspired to a four degrees-of-freedom model already proposed in the literature, but is expressed with a new formalism that allows some interesting properties to be outlined. Specifically, the expression of a particular frequency, herein called relative antiresonance frequency, as a function of the model generalised properties is derived: if the system is loaded with a harmonic force having that frequency, the linear behaviour of the hangers is assured for every value of the force amplitude. The proposed section model is applied to a footbridge benchmark subject to the pedestrian harmonic load and results are compared with those obtained through a nonlinear dynamic analysis on a 3D Finite Element model of the bridge.  相似文献   

13.
14.
The nonlinear hydrodynamic equations of motion for simple solids are derived. They are shown to be invariant under arbitrary homogeneous displacements, rotations, and deformations of the reference lattice. This leads to transport equations that are independent of a reference state. Galilean invariance is investigated too.  相似文献   

15.
A coupled pair of nonlinear parabolic equations is derived for the two components of the particle motion perpendicular to the axis of a shear wave beam in an isotropic elastic medium. The equations account for both quadratic and cubic nonlinearity. The present paper investigates, analytically and numerically, effects of cubic nonlinearity in shear wave beams for several polarizations: linear, elliptical, circular, and azimuthal. Comparisons are made with effects of quadratic nonlinearity in compressional wave beams.  相似文献   

16.
Helical springs serve as vibration isolators in virtually any suspension system. Various exact and approximate methods may be employed to determine the eigenfrequencies of vibrations of these structural elements and their dynamic transfer functions. The method of boundary integral equations is a meaningful alternative to obtain exact solutions of problems of the time-harmonic dynamics of elastic springs in the framework of Bernoulli-Euler beam theory. In this paper, the derivations of the Green's matrix, of the Somigliana's identities, and of the boundary integral equations are presented. The vibrational power transmission in an infinitely long spring is analyzed by means of the Green's matrix. The eigenfrequencies and the dynamic transfer functions are found by solving the boundary integral equations. In the course of analysis, the essential features and advantages of the method of boundary integral equations are highlighted. The reported analytical results may be used to study the time-harmonic motion in any wave guide governed by a system of linear differential equations in a single spatial coordinate along its axis.  相似文献   

17.
This paper presents a study of how different vibration modes contribute to the dynamics of an inclined cable that is parametrically excited close to a 2:1 internal resonance. The behaviour of inclined cables is important for design and analysis of cable-stayed bridges. In this work the cable vibrations are modelled by a four-mode model. This type of model has been used previously to study the onset of cable sway motion caused by internal resonances which occur due to the nonlinear modal coupling terms. A bifurcation study is carried out with numerical continuation techniques applied to the scaled and averaged modal equations. As part of this analysis, the amplitudes of the cable vibration response to support inputs is computed. These theoretical results are compared with experimental measurements taken from a 5.4 m long inclined cable with a vertical support input at the lower end. In general this comparison shows a very high level of agreement.  相似文献   

18.
The paper deals with the analysis of cables in stayed bridges and TV-towers, where the excitation is caused by harmonically varying in-plane motions of the upper support point with the amplitude U. Such cables are characterized by a sag-to-chord-length ratio below &0uml;02, which means that the lowest circular eigenfrequencies for in-plane and out-of-plane eigenvibrations, ω1and ω2, are closely separated. The dynamic analysis is performed by a two-degree-of-freedom modal decomposition in the lowest in-plane and out-of-plane eigenmodes. Modal parameters are evaluated based on the eigenmodes for the parabolic approximation to the equilibrium suspension. Superharmonic components of the ordern , supported by the parametric terms of the excitation and the non-linear coupling terms, are registered in the response for circular frequency ω?ω1/n. At moderate U, the cable response takes place entirely in the static equilibrium plane. At larger amplitudes the in-plane response becomes unstable and a coupled whirling superharmonic component occurs. In the paper a first order perturbation solution to the superharmonic response is performed based on the averaging method. For ω?(m/n1, m<n, the geometrical non-linear restoring forces gives rise to a substantial combinatorial harmonic component with the circular frequency (n/m)ω. Both entirely in-plane and coupled in-plane and out-of-plane responses occur. Based on an initial frequency analysis of the response, an analytical model for these vibrations is formulated with emphasis on superharmonics of the order n=3 and combinatorial harmonics of the order (n, m)=(3,2). All analytical solutions have been verified by direct numerical integration of the modal equations of motion.  相似文献   

19.
Non-linear free vibrations of a simply supported rectangular elastic plate are examined, by using stress equations of free flexural motions of plates with moderately large amplitudes derived by Herrmann. A modal expansion is used for the normal displacement that satisfies the boundary conditions exactly, but the in-plane displacements are satisfied approximately by an averaging technique. Galerkin technique is used to reduce the problem to a system of coupled non-linear ordinary differential equations for the modal amplitudes. These nonlinear differential equations are solved for arbitrary initial conditions by using the multiple-time-scaling technique. Explicit values of the coefficients that appear in the forementioned Galerkin system of equations are given, in terms of non-dimensional parameters characterizing the plate geometry and material properties, for a four-mode case, for which results for specific initial conditions are presented. A comparison of the results with those obtained in previous studies of the problem is presented. In addition, effects of prescribed edge loadings are examined for the four-mode case.  相似文献   

20.
The derivation of the equations of motion is given for a system consisting of two identical parallel cantilevers joined by a rigid connector at their free ends. Elementary beam theory is employed, and it is observed that the longitudinal and flexural deformations of the system are coupled through the boundary conditions but not through the differential equations. The associated free vibration problem is solved, and it is shown that the frequency determinant can be factored, yielding two independent frequency equations. One of these corresponds to the pure, free longitudinal motion of a pair of rods connected by a rigid body at their tips (both rods being equally stretched or compressed simultaneously), whereas the second and more complicated frequency equation is pertinent for the system undergoing flexural deformations in both rods, stretching in one rod, and compression in the other. This latter frequency equation is solved numerically, and the variations of the first six natural frequencies with connector thickness and length parameters are displayed graphically. Two orthogonality conditions for the eigenfunctions are derived, and a relatively simple form for the normalizing factor is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号