首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In the first part of the paper, a single degree-of-freedom model of a vibrating membrane with piezoelectric inserts is introduced and is initially applied to the case when a plane wave is incident with frequency close to one of the resonance frequencies. The model is a prototype of a device which converts ambient acoustical energy to electrical energy with the use of piezoelectric devices. The paper then proposes an enhancement of the energy harvesting process using a nonlinear processing of the output voltage of piezoelectric actuators, and suggests that this improves the energy conversion and reduces the sensitivity to frequency drifts. A theoretical discussion is given for the electrical power that can be expected making use of various models. This and supporting experimental results suggest that a nonlinear optimization approach allows a gain of up to 10 in harvested energy and a doubling of the bandwidth. A model is introduced in the latter part of the paper for predicting the behavior of the energy-harvesting device with changes in acoustic frequency, this model taking into account the damping effect and the frequency changes introduced by the nonlinear processes in the device.  相似文献   

3.
4.
In this paper we examine in detail the multiple responses of a novel vibrational energy harvester composed of a vertical bistable beam whose complex non-linear behavior is tuned via magnetic interaction. The beam was excited horizontally by a harmonic inertial force while mechanical vibrational energy is converted to electrical power through a piezoelectric element. The bistable laminate beam coupled to the piezoelectric transducer showed a variety of complex responses in terms of the beam displacement and harvested power output. The range of vibration patterns in this non-linear system included single-well oscillations and snap-through vibrations of periodic and chaotic character. Harvested power was found to be strongly dependent on the vibration pattern with nonlinearities providing a broadband response for energy harvesting. Wavelet analysis of measured voltage, displacement and velocity time histories indicated the presence of a variety of nonlinear periodic and also chaotic phenomena. To measure the complexity of response time series we applied phase portraits and determine stroboscopic points and multiscale entropy. It is demonstrated that by changing parameters such as the magnetic interaction, the characteristics of the bistable laminate harvester, such as the natural frequency, bandwidth, vibration response and peak power can be readily tailored for harvesting applications.  相似文献   

5.
《Current Applied Physics》2015,15(6):669-674
The objective of this research is to design a piezoelectric tile for harvesting energy from footsteps and to optimize the system for harvesting maximum energy. Because piezoelectric modules easily break when directly subjected to energy generated by human movements, we designed a tile that employs indirect energy transmission using springs and a tip mass. We aimed at matching the mechanical resonance frequency of the tile with that of the piezoelectric modules. The resonance frequency of a piezoelectric module with a 10-g tip mass was almost similar to the vibration frequency of the tile at 22.5 Hz when we dropped an 80-g steel ball from a 1-m height. We performed impedance matching and realized a matching value of 15 kΩ. Under these optimal mechanical and electrical conditions, we harvested 770-μW RMS and 55-mW peak output power.  相似文献   

6.
7.
As an alternative power solution for low-power devices, harvesting energy from the ambient mechanical vibration has received increasing research interest in recent years. In this paper we study the transient dynamic characteristics of a piezoelectric energy harvesting system including a piezoelectric energy harvester, a bridge rectifier, and a storage capacitor. To accomplish this, this energy harvesting system is modeled, and the charging process of the storage capacitor is investigated by employing the in-phase assumption The results indicate that the charging voltage across the storage capacitor and the gathered power increase gradually as the charging process proceeds, whereas the charging rate slows down over time as the charging voltage approaches to the peak value of the piezoelectric voltage across the piezoelectric materials. In addition, due to the added electrical damping and the change of the system natural frequency when the charging process is initiated, a sudden drop in the vibration amplitude is observed, which in turn affects the charging rate. However, the vibration amplitude begins to increase as the charging process continues, which is caused by the decrease in the electrical damping (i.e., the decrease in the energy removed from the mechanical vibration). This electromechanical coupling characteristic is also revealed by the variation of the vibration amplitude with the charging voltage.  相似文献   

8.
We propose an optimal design for supplementing flexible structures with a set of absorbers and piezoelectric devices for vibration confinement and energy harvesting. We assume that the original structure is sensitive to vibrations and that the absorbers are the elements where the vibration energy is confined and then harvested by means of piezoelectric devices. The design of the additional mechanical and electrical components is formulated as a dynamic optimization problem in which the objective function is the total energy of the uncontrolled structure. The locations, masses, stiffnesses, and damping coefficients of these absorbers and capacitances, load resistances, and electromechanical coupling coefficients are optimized to minimize the total energy of the structure. We use the Galerkin procedure to discretize the equations of motion that describe the coupled dynamics of the flexible structure and the added absorbers and harvesting devices. We develop a numerical code that determines the unknown parameters of a pre-specified set of absorbers and harvesting components. We input a set of initial values for these parameters, and the code updates them while minimizing the total energy in the uncontrolled structure. To illustrate the proposed design, we consider a simply supported beam with harmonic external excitations. Here, we consider two possible configurations for each of the additional piezoelectric devices, either embedded between the structure and the absorbers or between the ground and absorbers. We present simulations of the harvested power and associated voltage for each pair of collocated absorber and piezoelectric device. The simulated responses of the beam show that its energy is confined and harvested simultaneously.  相似文献   

9.
Vibration energy harvesting research has largely focused on linear electromechanical devices excited at resonance. Considering that most realistic vibration environments are more accurately described as either stochastic, multi-frequency, time varying, or some combination thereof, narrowband linear systems are fated to be highly inefficient under these conditions. Nonlinear systems, on the other hand, are capable of responding over a broad frequency range; suggesting an intrinsic suitability for efficient performance in realistic vibration environments. Since a number of nonlinear dynamical responses emerge from dissipative systems undergoing a homoclinic saddle-point bifurcation, we validate this concept with a bistable inertial oscillator comprised of permanent magnets and a piezoelectric cantilever beam. The system is analytically modeled, numerically simulated, and experimentally realized to demonstrate enhanced capabilities and new challenges. In addition, a bifurcation parameter within the design is examined as either a fixed or an adaptable tuning mechanism for enhanced sensitivity to ambient excitation.  相似文献   

10.
Conversion of ambient vibrational energy into electric power has been the impetus of much modern research. The traditional analysis has focused on absolute electrical power output from the harvesting devices and efficiency defined as the convertibility of an infinite resource of vibration excitation into power. This perspective has limited extensibility when applying resonant harvesters to host resonant structures when the inertial influence of the harvester is more significant. Instead, this work pursues a fundamental understanding of the coupled dynamics of a main mass-spring-damper system to which an electromagnetic or piezoelectric mass-spring-damper is attached. The governing equations are derived, a metric of efficiency is presented, and analysis is undertaken. It is found that electromagnetic energy harvesting efficiency and maximum power output is limited by the strength of the coupling such that no split system resonances are induced for a given mass ratio. For piezoelectric harvesters, only the coupling strength and certain design requirements dictate maximum power and efficiency achievable. Since the harvesting circuitry must "follow" the split resonances as the piezoelectric harvesters become more massive, the optimum design of piezoelectric harvesters appears to be more involved than for electromagnetic devices.  相似文献   

11.
This paper presents an optimal design for a system comprising a nonlinear energy sink (NES) and a piezoelectric-based vibration energy harvester attached to a free–free beam under shock excitation. The energy harvester is used for scavenging vibration energy dissipated by the NES. Grounded and ungrounded configurations are examined and the systems parameters are optimized globally to both maximize the dissipated energy by the NES and increase the harvested energy by piezoelectric element. A satisfactory amount of energy has been harvested as electric power in both configurations. The realization of nonlinear vibration control through one-way irreversible nonlinear energy pumping and optimizing the system parameters result in acquiring up to 78 percent dissipation of the grounded system energy.  相似文献   

12.
13.
A flexible piezoelectric harvester based on the epitaxial growth of an array ZnO nanorods with zigzag layers to enhance bending and compression deformation is investigated. The effects of the growth temperature, growth time, and growth concentration for ZnO epitaxial growth are determined on the flexible substrate. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to analyze the nanostructures and crystalline characteristics of the nanorods, respectively. Nanorod piezoelectric harvesting with screen printing technology was integrated on the polyimide substrate. The results show that epitaxial ZnO nanorods at a concentration ratio of (1:4), a growth time of 4 hours, and a growth temperature of 90°C have perfect crystal morphology for piezoelectric harvesting. The current-voltage characteristics exhibit Schottky-like behavior. During the harvesting process, the current output was highly reproducible and repeatable when the ultrasonic wave equipment was turned on and off. The current output after bending increases with increasing curvature radius due to a compression force during the bending process.  相似文献   

14.
15.
In this paper, the harmonic signals generated by UHF RFID chips, usually considered as spurious effects and unused, are exploited. Indeed, the harmonic signals are harvested to feed a supplementary circuitry associated with a passive RFID tag. Two approaches are presented and compared. In the first one, the third-harmonic signal is combined with an external 2.45-GHz Wi-Fi signal. The integration is done in such a way that the composite signal boosts the conversion efficiency of the energy harvester. In the second approach, the third-harmonic signal is used as the only source of a harvester that energizes a commercial temperature sensor associated with the tag. The design procedures of the two “augmented-tag” approaches are presented. The performance of each system is simulated with ADS software, and using Harmonic Balance tool (HB), the results obtained in simulation and measurements are compared also.  相似文献   

16.
Piezoelectric diaphragm for vibration energy harvesting   总被引:1,自引:0,他引:1  
Minazara E  Vasic D  Costa F  Poulin G 《Ultrasonics》2006,44(Z1):e699-e703
This paper presents a technique of electric energy generation using a mechanically excited unimorph piezoelectric membrane transducer. The electrical characteristics of the piezoelectric power generator are investigated under dynamic conditions. The electromechanical model of the generator is presented and used to predict its electrical performances. The experiments was performed with a piezoelectric actuator (shaker) moving a macroscopic 25 mm diameter piezoelectric membrane. A power of 0.65 mW was generated at the resonance frequency (1.71 kHz) across a 5.6 kOmega optimal resistor and for a 80 N force. A special electronic circuit has been conceived in order to increase the power harvested by the piezoelectric transducer. This electrical converter applies the SSHI (synchronized switch harvesting on inductor) technique, and leads to remarkable results: under the same actuation conditions the generated power reaches 1.7 mW, which is sufficient to supply a large range of low consumption sensors.  相似文献   

17.
The possibility of recycling ambient energies with electric generators instead of using batteries with limited life spans has stimulated important research efforts over the past years. The integration of such generators into mainly autonomous low-power systems, for various industrial or domestic applications is envisioned. In particular, the present work deals with energy harvesting from mechanical vibrations. It is shown here that direct piezoelectric energy harvesting (short circuiting on an adapted resistance, for example) leads to relatively weak energy levels that are insufficient for an industrial development. By coupling an electric field and mechanical excitation on Ericsson-based cycles, the amplitude of the harvested energy can be highly increased, and can reach a maximum close to 100 times its initial value. To obtain such a gain, one needs to employ high electrical field levels (high amplitude, high frequency), which induce a non-linearity through the piezoceramic. A special dynamic hysteresis model has been developed to correctly take into account the material properties, and to provide a real estimation of the harvested energy. A large number of theoretical predictions and experimental results have been compared and are discussed herein, in order to validate the proposed solution.  相似文献   

18.
A type of dual-mass vibration energy harvester, where two masses are connected in series with the energy transducer and spring, is proposed and analyzed in this paper. The dual-mass vibration energy harvester is proved to be able to harvest more energy than the traditional single degree-of-freedom (dof) one when subjected to harmonic force or base displacement excitations. The optimal parameters for maximizing the power output in both the traditional and the new configurations are discussed in analytical form while taking the parasitic mechanical damping of the system into account. Consistent of the previous literature, we find that the optimal condition for maximum power output of the single dof vibration energy harvester is when the excitation frequency equals to the natural frequency of the mechanical system and the electrical damping due to the energy harvesting circuit is the same as the mechanical damping. However, the optimal conditions are quite different for the dual-mass vibration energy harvester. It is found that two local optimums exist, where the optimal excitation frequency and electrical damping are analytically obtained. The local maximum power of the dual-mass vibration energy harvester is larger than the global maximum power of single dof one. Moreover, at certain frequency range between the two natural frequencies of the dual-mass system, the harvesting power always increases with the electrical damping ratio. This suggests that we can obtain higher energy harvesting rate using dual-mass harvester. The sensitivity of the power to parameters, such as mass ratio and tuning ratio, is also investigated.  相似文献   

19.
The performance of a ring of linearly coupled, monostable nonlinear oscillators is optimized towards its goal of acting as energy harvester – through piezoelectric transduction – of mesoscopic fluctuations, which are modeled as Ornstein-Uhlenbeck noises. For a single oscillator, the maximum output voltage and overall efficiency are attained for a soft piecewise-linear potential (providing a weak attractive constant force) but they are still fairly large for a harmonic potential. When several harmonic springs are linearly and bidirectionally coupled to form a ring, it is found that counter-phase coupling can largely improve the performance while in-phase coupling worsens it. Moreover, it turns out that few (two or three) coupled units perform better than more.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号