首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This paper develops a three-dimensional analytical model of a fluid-loaded acoustic coating affixed to a rib-stiffened plate. The system is loaded by a plane wave that is harmonic both spatially and temporally. The model begins with Navier-Cauchy equations of motion for an elastic solid, which produces displacement fields that have unknown wave propagation coefficients. These are inserted into stress equations at the boundaries of the plate and the acoustic coating. These stress fields are coupled to the fluid field and the rib stiffeners with force balances. Manipulation of these equations develops an infinite number of indexed equations that are truncated and incorporated into a global matrix equation. This global matrix equation can be solved to determine the wave propagation coefficients. This produces analytical solutions to the systems’ displacements, stresses, and scattered pressure field. This model, unlike previously developed analytical models, has elastic behavior and thus incorporates higher order wave motion that makes it accurate at higher wavenumbers and frequencies. An example problem is investigated for three specific model results: (1) the dynamic response, (2) a sonar array embedded in the acoustic coating, and (3) the scattered pressure field. An expression for the high frequency limitation of the model is derived. It is shown that the ribs can have a significant impact on the structural acoustic response of the system.  相似文献   

2.
This paper develops a three-dimensional analytical model of a cylinder that contains a longitudinal stiffener. The model begins with the equations of motion for a fully elastic solid that produces displacement fields with unknown wave propagation coefficients. These are inserted into stress and displacement equations at the cylinder boundaries and at the location of the stiffener. Orthogonalization of these equations produces an infinite number of indexed algebraic equations that can be truncated and incorporated into a global matrix equation. Solving this equation yields the solution to the wave propagation coefficients and allows the system's displacements and stresses to be calculated. The model is verified by comparison of the results of a plane strain analysis example to a solution generated using finite element theory. A three-dimensional example problem is formulated and the displacement results are illustrated. The inclusion of multiple stiffeners is discussed.  相似文献   

3.
This paper considers the vibration of a symmetrical system consisting of an infinite fluid loaded plate bearing a finite number of parallel stiffeners. The system is driven at the central stiffener by a travelling wave line force. Formal solutions for the equations of motion are found in terms of cosine transforms. Manipulation of the equations allows the problem to be reduced to the solution of a set of linear algebraic equations in the vibration amplitudes at the stiffeners. The coefficients in these equations depend in a simple way upon the stiffener parameters, and upon particular values of the cosine transform of a function which depends only on the plate and fluid parameters, and the stiffener positions.  相似文献   

4.
This paper develops a solution method for the longitudinal motion of a rod or the flexural motion of a beam of infinite length whose area varies periodically. The conventional rod or beam equation of motion is used with the area and moment of inertia expressed using analytical functions of the longitudinal (horizontal) spatial variable. The displacement field is written as a series expansion using a periodic form for the horizontal wavenumber. The area and moment of inertia expressions are each expanded into a Fourier series. These are inserted into the differential equations of motion and the resulting algebraic equations are orthogonalized to produce a matrix equation whose solution provides the unknown wave propagation coefficients, thus yielding the displacement of the system. An example problem of both a rod and beam are analyzed for three different geometrical shapes. The solutions to both problems are compared to results from finite element analysis for validation. Dispersion curves of the systems are shown graphically. Convergence of the series solutions is illustrated and discussed.  相似文献   

5.
The present investigation is concerned with the flexural and transversal wave motion in an infinite, transversely isotropic, thermoelastic plate by asymptotic method. The governing equations for the flexural and transversal motions have been derived from the system of three-dimensional dynamical equations of linear theory of coupled thermoelasticity. The asymptotic operator plate model for free vibrations; both flexural and transversal, in a homogenous thermoelastic plate leads to fifth degree and cubic polynomial secular equations, respectively, that governs frequency and phase velocity of various possible modes of wave propagation at all wavelengths. All the coefficients of differential operator have been expressed as explicit functions of the material parameters. The velocity dispersion equations for the flexural and transversal wave motion have been deduced from the three-dimensional analog of Rayleigh-Lamb frequency equation for thermoelastic plate waves. The approximations for long and short waves and expression for group velocity have also been derived. The thermoelastic Rayleigh-Lamb frequency equations for the considered plate are expanded in power series in order to obtain polynomial frequency and velocity dispersion relations whose equivalence is established with that of asymptotic method. The dispersion curves for phase velocity, group velocity and attenuation coefficient of various flexural and transversal wave modes are shown graphically for aluminum-epoxy material elastic and thermoelastic plates.  相似文献   

6.
Based on the three-dimensional linear elastic equations and magnetoelectroelastic constitutive relations, propagation of symmetric and antisymmetric Lamb waves in an infinite magnetoelectroelastic plate is investigated. The coupled differential equations of motion are solved, and the phase velocity equations of symmetric and antisymmetric modes are obtained for both electrically and magnetically open and shorted cases. The dispersive characteristic of wave propogation is explored. The mechanical, electric and magnetic responses of the lowest symmetric and antisymmetric Lamb wave modes are discussed in detailed. Obtained results are valuable for the analysis and design of broadband magnetoelectric transducer using composite materials.  相似文献   

7.
A computational method for time-domain multi-physics simulation of wave propagation in a poroelastic medium is presented. The medium is composed of an elastic matrix saturated with a Newtonian fluid, and the method operates on a digital representation of the medium where a distinct material phase and properties are specified at each volume cell. The dynamic response to an acoustic excitation is modeled mathematically with a coupled system of equations: elastic wave equation in the solid matrix and linearized Navier-Stokes equation in the fluid. Implementation of the solution is simplified by introducing a common numerical form for both solid and fluid cells and using a rotated-staggered-grid which allows stable solutions without explicitly handling the fluid-solid boundary conditions. A stability analysis is presented which can be used to select gridding and time step size as a function of material properties. The numerical results are shown to agree with the analytical solution for an idealized porous medium of periodically alternating solid and fluid layers.  相似文献   

8.
In this paper the asymptotic method has been applied to investigate propagation of generalized thermoelastic waves in an infinite homogenous isotropic plate. The governing equations for the extensional, transversal and flexural motions are derived from the system of three-dimensional dynamical equations of linear theories of generalized thermoelasticity. The asymptotic operator plate model for extensional and flexural free vibrations in a homogenous thermoelastic plate leads to sixth and fifth degree polynomial secular equations, respectively. These secular equations govern frequency and phase velocity of various possible modes of wave propagation at all wavelengths. The velocity dispersion equations for extensional and flexural wave motion are deduced from the three-dimensional analog of Rayleigh-Lamb frequency equation for thermoelastic plate. The approximation for long and short waves along with expression for group velocity has also been obtained. The Rayleigh-Lamb frequency equations for the considered plate are expanded in power series in order to obtain polynomial frequency and velocity dispersion relations and its equivalence established with that of asymptotic method. The numeric values for phase velocity, group velocity and attenuation coefficients has also been obtained using MATHCAD software and are shown graphically for extensional and flexural waves in generalized theories of thermoelastic plate for solid helium material.  相似文献   

9.
The impact of a rigid body upon an infinite isotropic plate is investigated for the case when the viscoelastic features of the plate represent themselves only in the place of contact and are governed by the standard linear solid model with fractional derivatives. Thus, the problem concerns the shock interaction of the dropping mass and the target, wherein instead of the Hertz contact law the generalized fractional derivative standard linear solid law is employed as a law of interaction. The part of the plate beyond the contact domain is assumed to be elastic, and its behaviour is described by the equations of motion which take rotary inertia and shear deformations into account. It is assumed that transient waves generate in the plate at the moment of impact, the influence of which on the contact domain is considered using the theory of discontinuities. To determine the desired values behind the transverse shear wave front, one-term ray expansions are used, as well as the equations of motion of the falling mass and the contact region. As a result, we are led to a set of two linear differential equations, the solution of which is found analytically by the Laplace transform and by the Euler substitution method. This allows the contact force to be determined as a function of time.  相似文献   

10.
Based on the strain gradient and Eringen’s piezoelasticity theories, wave propagation of an embedded double-walled boron nitride nanotube (DWBNNT) conveying fluid is investigated using Euler–Bernoulli beam model. The elastic medium is simulated by the Pasternak foundation. The van der Waals (vdW) forces between the inner and outer nanotubes are taken into account. Since, considering electro-mechanical coupling made the nonlinear motion equations, a numerical procedure is proposed to evaluate the upstream and downstream phase velocities. The results indicate that the effect of nonlinear terms in motion equations on the phase velocity cannot be neglected at lower wave numbers. Furthermore, the effect of fluid-conveying on wave propagation of the DWBNNT is significant at lower wave numbers.  相似文献   

11.
Free and forced vibrations of triangular plate are investigated. Diverse types of stiffeners were attached onto the plate to suppress the undesirable large-amplitude oscillations. The governing equation of motion for a triangular plate, based on the von Kármán theory, is developed and the nonlinear ordinary differential equation of the system using Galerkin approach is obtained. Closed-form expressions for the free undamped and large-amplitude vibration of an orthotropic triangular elastic plate are presented using the two well-known analytical methods, namely, the energy balance method and the variational approach. The frequency responses in the closed-form are presented and their sensitivities with respect to the initial amplitudes are studied. An error analysis is performed and the vibration behavior, as well as the accuracy of the solution methods, is evaluated. Different types of the stiffened triangular plates are considered in order to cover a wide range of practical applications. Numerical simulations are carried out and the validity of the solution procedure is explored. It is demonstrated that the two methods of energy balance and variational approach have been quite straightforward and reliable techniques to solve those nonlinear differential equations. Subsequently, due to the importance of multiple resonant responses in engineering design, multi-frequency excitations are considered. It is assumed that three periodic forces are applied to the plate in three specific positions. The multiple time scaling method is utilized to obtain approximate solutions for the frequency resonance cases. Influences of different parameters, namely, the position of applied forces, geometry and the number of stiffeners on the frequency response of the triangular plates are examined.  相似文献   

12.
The free vibration of a circular plate on an elastic foundation is analyzed by using Vlasov's two-parameter model. The natural frequencies of the system under axisymmetric conditions are determined. In the region of the plate, the general solution is represented by Bessel functions. Modified wave equations are used to predict the harmonic motion of the elastic foundation. Since the region outside of the plate is infinite, a reflected wave is not produced, thereby eliminating the need to consider a wave moving toward the plate. Finally, the effects of various parameters of the plate and the foundation on the natural frequencies system are discussed.  相似文献   

13.
A fixed-mesh algorithm is proposed for simulating flow–structure interactions such as those occurring in biological systems, in which both the fluid and solid are incompressible and the solid deformations are large. Several of the well-known difficulties in simulating such flow–structure interactions are avoided by formulating a single set of equations of motion on a fixed Eulerian mesh. The solid’s deformation is tracked to compute elastic stresses by an overlapping Lagrangian mesh. In this way, the flow–structure interaction is formulated as a distributed body force and singular surface force acting on an otherwise purely fluid system. These forces, which depend on the solid elastic stress distribution, are computed on the Lagrangian mesh by a standard finite-element method and then transferred to the fixed Eulerian mesh, where the joint momentum and continuity equations are solved by a finite-difference method. The constitutive model for the solid can be quite general. For the force transfer, standard immersed-boundary and immersed-interface methods can be used and are demonstrated. We have also developed and demonstrated a new projection method that unifies the transfer of the surface and body forces in a way that exactly conserves momentum; the interface is still effectively sharp for this approach. The spatial convergence of the method is observed to be between first- and second-order, as in most immersed-boundary methods for membrane flows. The algorithm is demonstrated by the simulations of an advected elastic disk, a flexible leaflet in an oscillating flow, and a model of a swimming jellyfish.  相似文献   

14.
This paper presents a detailed analysis of the dispersion for flexural edge waves in semi-infinite isotropic elastic plates. A solution to the dynamic equations of motion is constructed by the superposition of two partial solutions, each providing zero shear stresses at the plate faces. A dispersion equation is expressed via the determinant of an infinite system of linear algebraic equations. The system is reduced to a finite one by taking into account the asymptotic behaviour of unknown coefficients. The accuracy of the solution is confirmed by a good agreement with the available experimental data and by a proper satisfaction of the prescribed boundary conditions.A detailed analysis of dispersion properties for the edge wave and corresponding displacements at various frequencies is carried out. In addition to the well-known results it is shown that the plate height does not influence the existence of the edge wave at high frequencies and, as the frequency increases, the phase velocity of the edge wave in a semi-infinite plate asymptotically approaches the velocity of an edge wave in a right-angled wedge. The performed analysis allows evaluating the plate theories such as the Kirchhoff theory or other refined plate theories developed for modeling edge waves in semi-infinite elastic plates at low frequencies.  相似文献   

15.
In this paper wave propagation in non-local elastic solids is examined in the framework of the mechanically based non-local elasticity theory established by the author in previous papers. It is shown that such a model coincides with the well-known Kröner-Eringen integral model of non-local elasticity in unbounded domains. The appeal of the proposed model is that the mechanical boundary conditions may easily be imposed because the applied pressure at the boundaries of the solid must be equilibrated by the Cauchy stress. In fact, the long-range forces between different volume elements are modelled, in the body domain, as central body forces applied to the interacting elements. It is shown that the shape change of travelling disturbances coalesces with those predicted by the non-local integral theory of elasticity in unbounded domains, but several differences arise in the case of bounded domains. The wave propagation problem has been formulated by means of the Hamiltonian functional of the proposed mechanically based model of non-local elasticity, introducing an additional term to the elastic potential energy that accounts for elastic long-range interactions. In this way, the wave equation may be obtained in a weak formulation and be further used to provide approximate analytical solutions to the governing equation in the context of standing wave analysis. An equivalent discrete point-spring model, similar to lattice-type networks, has also been introduced to show the mechanical equivalence of the non-local elastic model as well as to provide a mechanical scheme suitable for the numerical treatment of pressure waves travelling in non-local bounded domains.  相似文献   

16.
一种分析周期加筋板声辐射的高效方法   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究周期加筋板的声辐射特性,建立了一种计算水中周期加筋板在简谐点力作用下的远场辐射声压的高效方法。该方法借助于傅里叶变换法只要先将耦合系统的声振方程,加强筋的弯曲和扭转运动方程,声学波动方程和耦合边界条件转换到波数域中,联合求解得到一组关于平板横向位移的无限大耦合代数方程组,再将该方程组截断成有限大小由数值方法求出波数域中的位移响应,便可结合稳相法得到远场辐射声压。与现有方法给出的结果对比发现二者完全吻合,验证了本文方法的有效性;通过数值方法研究了激励力位置、板厚,加强筋间距和宽度对周期加筋板声辐射特性的影响,得到了具有实际意义的结论。   相似文献   

17.
Jacob Philip 《Pramana》1987,29(4):391-398
The equations of motion for the propagation of finite amplitude elastic waves in crystals of tetragonal symmetry have been derived starting from the expression for the elastic strain energy. The equations have been solved for a finite amplitude sinusoidal wave propagating along the pure mode directions which are [100], [110] and [001] for the tetragonal group TI. The solutions corresponding to longitudinal wave propagation yield expressions for the amplitudes of the fundamental and generated second harmonic for these directions in terms of certain combinations of second and third order elastic constants of the medium. The results will aid the experimenter to determine these constants using ultrasonic harmonic generation technique.  相似文献   

18.
The acoustic field and the field of radiative forces that are formed in a liquid layer on a solid substrate are calculated for the case of wave propagation along the interface. The calculations take into account the effects produced by surface tension, viscous stresses at the boundary, and attenuation in the liquid volume on the field characteristics. The dispersion equations and the velocities of wave propagation are determined. The radiative forces acting on a liquid volume element in a standing wave are calculated. The structure of streaming is studied. The effect of streaming on small-size particles is considered, and the possibilities of ordered structure formation from them are discussed.  相似文献   

19.
A three-dimensional Eulerian method is presented for simulating dynamic systems comprising multiple compressible solid and fluid components where internal boundaries are tracked using level-set functions. Aside from the interface interaction calculation within mixed cells, each material is treated independently and the governing constitutive laws solved using a conservative finite volume discretisation based upon the solution of Riemann problems to determine the numerical fluxes. The required reconstruction of mixed cell volume fractions and cut cell geometries is presented in detail using the level-set fields. High-order accuracy is achieved by incorporating the weighted-essentially non-oscillatory (WENO) method and Runge–Kutta time integration. A model for elastoplastic solid dynamics is employed formulated using the tensor of elastic deformation gradients permitting the equations to be written in divergence form. The scheme is demonstrated using selected one-dimensional initial value problems for which exact solutions are derived, a two-dimensional void collapse, and a three-dimensional simulation of a confined explosion.  相似文献   

20.
An analytical method to investigate wave propagation in single- and double- walled carbon nanotubes under initial compression stress is presented. The nanotube structures are treated within the multilayer thin shell approximation with the elastic properties taken to be those of the graphene sheet. The governing equations are derived based on Flügge equations of motion. Frequency equations of wave propagation in single and double wall carbon nanotubes are described through the effects of initial compression stress and van der Waals force. To show the effects of Initial compression stress on the wave propagation in nanotubes, the symmetrical mode can be analyzed based on the present elastic continuum model. It is shown that the wave speed are sensitive to the compression stress especially for the lower frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号